|
Новости астрономии
18/02/2014
Продолжаю рассказывать о подтвержденных планетных системах Кеплера, анонсированных Калифорнийской группой в конце прошлого года. Сегодня речь пойдет о многопланетных системах Kepler-100, Kepler-102 и Kepler-106.
Среди планетных систем Кеплера значительная часть является многопланетной – т.е. содержит сразу несколько транзитных кандидатов. Такие системы гораздо более надежны, чем одиночные (вероятность того, что транзитный кандидат в многопланетной системе окажется ложным, гораздо ниже, чем аналогичная вероятность для одиночного кандидата). Как правило, подобные системы содержат несколько (3-5) сравнительно небольших планет на круговых или близких к круговым орбитах, тесно упакованных глубоко внутри орбиты Меркурия (0.39 а.е.).
Kepler-100 (KOI-41, KIC 6521045)
Kepler-100 – солнцеподобная звезда немного массивнее, ярче и больше Солнца. Ее спектральный класс – ранний G, масса оценивается в 1.08 ± 0.06 солнечных масс, радиус почти в полтора раза превышает солнечный. По всей видимости, звезда недавно сошла с главной последовательности и начала эволюционировать в сторону превращения в красный гигант, ее возраст составляет ~6.5 млрд. лет.
Кривая блеска этой звезды демонстрирует 3 транзитных сигнала с периодами 6.9, 12.8 и 35.3 земных суток, соответствующих планетам с радиусами 1.3, 2.2 и 1.6 радиусов Земли. В мае 2010 года была проведена съемка окрестностей Kepler-100 с помощью системы адаптивной оптики ARIES на телескопе MMT, дабы исключить имитацию транзитных сигналов затменно-переменными двойными фона. На расстоянии от 0.1 до 6 угловых секунд от Kepler-100 никаких более-менее ярких звезд не обнаружилось. Спектры звезды Kepler-100, полученные на 2.7-метровом телескопе МакДональда, также не показали следов наличия дополнительных звездных спектров. Все это привело астрономов к выводу, что транзитные кандидаты системы Kepler-100 действительно являются планетами.
Начиная с 29 июля 2009 года, в течение 1221 дней было получено 44 замера лучевой скорости звезды Kepler-100. Методом измерения лучевых скоростей удалось оценить массу только самой внутренней планеты Kepler-100 b – она оказалась равной 7.34 ± 3.2 масс Земли. На массы остальных двух планет были получены верхние пределы – 7 и 3 массы Земли. Средняя плотность внутренней планеты таким образом составила 14.25 ± 6.33 г/куб.см, что явно говорит о ее железокаменном (или даже преимущественно железном) составе. Средняя плотность второй планеты не превышает ~3.6 г/куб.см, что говорит о большой доле летучих, входящих в ее состав.
Kepler-102 (KOI-82, KIC 10187017)
Kepler-102 – оранжевый карлик массой 0.80 ± 0.06 солнечных масс и радиусом 0.74 ± 0.02 солнечных радиусов. Кривая блеска этой звезды демонстрирует целых 5 транзитных сигналов с периодами 5.28, 7.1, 10.3, 16.1 и 27.5 земных суток и глубиной, соответствующей планетам с радиусами (от внутренней планеты к внешней) 0.47, 0.58, 1.18, 2.22 и 0.88 радиусов Земли. В июне 2010 года была проведена съемка окрестностей Kepler-102 с помощью системы адаптивной оптики ARIES; на угловых расстояниях более 0.2 угловых секунд не было обнаружено ни одной фоновой звезды, которая была бы менее чем на 7 звездных величин тусклее Kepler-102. Отсутствие каких-либо следов дополнительных звездных спектров в спектре Kepler-102 также убедило ученых в том, что ее транзитные кандидаты являются планетами, а не близкими затменно-переменными двойными фона.
Измерение лучевых скоростей звезды с помощью спектрографа HIRES помогло оценить массы самых крупных планет в этой системе – Kepler-102 d и Kepler-102 e. Масса планеты Kepler-102 d очень неуверенно оценили в 3.8 ± 1.8 масс Земли, что при радиусе 1.18 радиусов Земли приводит к средней плотности 13.27 ± 6.46 г/куб.см (это означает ее железокаменный или преимущественно железный состав). Масса планеты Kepler-102 e при радиусе 2.22 радиуса Земли оказалась равной 8.93 ± 2.0 масс Земли, а ее средняя плотность – 4.7 ± 1.1 г/куб.см. Остальные три планеты этой системы слишком маленькие, чтобы заметно повлиять на лучевую скорость своей звезды, так что их масса, состав и средняя плотность остались неизвестными (соответствующие верхние пределы составили 4.3 и 3.0 масс Земли для двух внутренних планет и 5.2 массы Земли для самой внешней планеты).
Kepler-106 (KOI-116, KIC 8395660)
Kepler-106 – еще одна солнцеподобная звезда раннего G-класса. Ее масса в пределах погрешностей измерения равна солнечной, радиус довольно неуверенно оценивается в 1.04 ± 0.17 солнечных радиусов. Кривая блеска этой звезды демонстрирует 4 транзитных сигнала с периодами 6.2, 13.6, 24.0 и 43.8 земных суток и глубиной, соответствующей планетам с радиусами 0.82 ± 0.11, 2.50 ± 0.32, 0.95 ± 0.13 и 2.56 ± 0.33 радиусов Земли (большие погрешности в определении радиусов планет вызваны значительной погрешностью в определении радиуса звезды, поскольку глубина транзита пропорциональна величине (r pl/R star) 2).
Как и для остальных звезд выборки, для Kepler-106 была проделана стандартная процедура валидации (предварительного подтверждения транзитных кандидатов). Снимки окрестностей звезды, сделанные с помощью системы адаптивной оптики ARIES, показали отсутствие подозрительных фоновых звезд, а спектр Kepler-106 оказался лишен признаков дополнительных звездных спектров. Измерения лучевой скорости звезды с помощью спектрографа HIRES позволили оценить массы обеих крупных планет Kepler-106 c и Kepler-106 e, тогда как массы двух маленьких планет измерить не удалось.
Масса второй планеты Kepler-106 c оказалась равной 10.44 ± 3.2 масс Земли, что приводит к средней плотности 3.28 ± 1.56 г/куб.см. Массу четвертой планеты оценили в 11.2 ± 5.8 масс Земли (соответственно, средняя плотность оказалась равной 3.1 ± 2.1 г/куб.см).
Авторы научной работы отмечают, что среди тех планет, у которых хоть как-то удалось измерить массу и оценить среднюю плотность, плотными (т.е. железокаменными или преимущественно железными) являются планеты небольших размеров (с радиусами < 1.5 радиусов Земли), тогда как все планеты с радиусами больше 2 радиусов Земли оказались явно обогащенными летучими веществами.
Общая распространенность планет с радиусами 1-4 радиусов Земли ближе 0.5 а.е. от родительских звезд оценивается авторами в 30-50%. Заметим, что Солнечная система в эти 30-50% не входит: радиус Меркурия заметно меньше 1 радиуса Земли, а Венера вращается дальше 0.5 а.е. от Солнца, пишет сайт Планетные системы.
17/02/2014
13 февраля 2014 года команда Кеплера обновила список надежных транзитных кандидатов в планеты, обнаруженных одноименным космическим телескопом за 16 наблюдательных кварталов. Общее количество кандидатов, вошедших в список KOI, достигло 3841. Добавлено новых 239 кандидатов, из которых 50 расположены в обитаемой зоне своих звезд, причем у 5 из них радиус меньше 1.5 радиусов Земли.
К сожалению, у большинства небольших кандидатов погрешности в определении радиуса очень велики и сравнимы с измеряемой величиной.
Как мы видим, среди новых кандидатов преобладают небольшие планеты со сравнительно долгими орбитальными периодами, для которых наблюдалось всего 3-4 транзита. Фактически, команда Кеплера приступила к открытию аналогов Венеры и подобралась к открытию аналогов Земли. Обработка фотометрических данных продолжается, нас еще ждут новые открытия! Пишет сайт Планетные системы.
15/02/2014
-220x270.jpg) 15 февраля 1564 года в Пизе родился знаменитый астроном, физик, математик и философ Галилео Галилей! Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий.
При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью. Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической механики.
В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым уляром. Труба давала приблизительно трёхкратное увеличение.Телескопические наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф — покрыта горами и кратерами. У Юпитера обнаружились собственные луны — четыре спутника. Галилей открыл также солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес. По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца. Ученый установил, что Венера меняет фазы. Галилей отметил также странные «придатки» у Сатурна, но открытию кольца помешали слабость телескопа и поворот кольца, скрывший его от земного наблюдателя. Он показал, что при наблюдении в телескоп планеты видны как диски, видимые размеры которых в различных конфигурациях меняются в таком соотношении, какое следует из теории Коперника.
Галилео Галилей умер 8 января 1642 года, Похоронили его в Арчетри без почестей. В 1737 году прах Галилея, как он и просил, был перенесён в базилику Санта Кроче, где 17 марта он был торжественно погребён рядом с Микеланджело. В 1758 году Папа Бенедикт XIV велел вычеркнуть работы, защищавшие гелиоцентризм, из «Индекса запрещённых книг»; впрочем, эта работа проводилась неспешно и завершилась только в 1835 году.
15/02/2014
В конце прошлого года команда Кеплера вместе с Калифорнийской группой подвели итог масштабного научного исследования, результатом которого стало подтверждение планетной природы 49 планет в 22 планетных системах (из которых 42 планеты – транзитные, а 7 – не транзитные). Каждая из выбранных звезд подверглась тщательной многоступенчатой проверке для исключения астрофизических явлений, которые могут имитировать транзитные сигналы и приводить к ложным открытиям. Так, для каждой из звезд были получены спектры высокого разрешения для исключения наличия звездных компаньонов и уточнения параметров самих звезд, и проведена съемка окрестностей на 2.6-3 метровых наземных телескопах, оснащенных системами адаптивной оптики, для исключения затменно-переменных двойных фона, расположенных на малом угловом расстоянии от целевых звезд. Далее для каждой из звезд было сделано несколько замеров лучевой скорости с помощью спектрографа HIRES на обсерватории им. Кека. Для измерения лучевой скорости отбирались только звезды ярче 14.5 видимой звездной величины, чтобы погрешность каждого замера не превышала 2-3 м/сек.
В результате у ряда планетных кандидатов методом измерения лучевых скоростей была измерена масса, а для остальных – получены хорошие верхние пределы, дающие ограничения на их химический состав. В ближайшие дни я буду подробно рассказывать о каждой из этих систем.
Сегодня речь пойдет о четырех планетах размерного класса суперземель, получивших наименования Kepler-93 b, Kepler-97 b, Kepler-98 b и Kepler-99 b. Все они расположены на тесных круговых орбитах с периодами от 1.54 до 4.73 земных суток, все нагреты до высоких температур. Масса каждой из них была измерена спектрографом HIRES (хотя погрешности измерений частенько оказываются сравнимы с измеряемой величиной).
Kepler-93 (KOI-69, KIC 3544595)
Kepler-93 b – суперземля радиусом 1.50 ± 0.03 радиусов Земли, вращающаяся на расстоянии 0.054 а.е. от солнцеподобной звезды спектрального класса G5 V и делающая один оборот за 4.72674 земных суток. Формально масса, измеренная спектрографом HIRES, составляет 2.59 ± 2.0 земных масс, что с достоверностью 2 сигма совместимо с нулем. Поэтому авторы статьи осторожно дают только верхний предел на массу этой планеты – 4.4 земных масс, что приводит к верхнему пределу на среднюю плотность 7.2 г/куб.см. Как мы видим, планета Kepler-93 b может оказаться как железокаменной, как и обогащенной летучими элементами, вплоть до мини-нептуна.
Дополнительный линейный дрейф лучевой скорости звезды говорит о том, что в этой системе есть еще как минимум одна планета с массой больше 3 масс Юпитера и орбитальным периодом больше 4 лет.
Kepler-97 (KOI-292, KIC 11075737)
Kepler-97 b – еще одна суперземля с радиусом 1.48 ± 0.13 радиусов Земли, вращающаяся вокруг солнцеподобной звезды немного легче и холоднее Солнца. Ее орбитальный период – 2.58664 земных суток, большая полуось орбиты 0.036 а.е. Масса этой планеты, измеренная спектрографом HIRES, оценивается в 3.51 ± 1.9 земных масс, что приводит к средней плотности 5.44 ± 3.48 г/куб.см. Авторы статьи и тут с сожалением замечают, что масса планеты отличается от нуля с достоверностью всего в 2 сигма, и приводят верхний предел – 9.1 масс Земли. Поскольку средняя плотность планеты в этом случае оказывается нереалистично большой (14 г/куб.см), скорее всего, ее реальная масса оказывается близкой к оценке, полученной RV-методом.
На расстоянии 0.37 ± 0.01 угловых секунд от звезды Kepler-97 расположен звездный компаньон на 2.7 звездных величин слабее ее. Дополнительная проверка этой звезды показала, что она не является затменно-переменной двойной и не имитирует транзитный сигнал на кривой блеска Kepler-97. Однако этот компаньон может отвечать за наблюдаемый дополнительный дрейф лучевой скорости звезды Kepler-97. Формально (согласно измерениям лучевой скорости) в системе есть еще небесное тело с орбитальным периодом больше 789 земных суток и массой больше 1.08 масс Юпитера, однако является ли оно звездой-спутником или другой планетой, пока не известно.
Kepler-98 (KOI-299, KIC 2692377)
Kepler-98 b заметно больше по своим размерам, чем две рассмотренные выше планеты – ее радиус оценивается в 1.99 ± 0.22 радиусов Земли. Скорее всего, она является мини-нептуном, о чем говорит ее масса (3.55 ± 1.6 масс Земли) и средняя плотность (2.2 ± 1.2 г/куб.см). Планета вращается вокруг солнцеподобной звезды на расстоянии 0.026 а.е. и делает один оборот за 1.54168 земных суток. Верхний предел на массу этой планеты составляет 6.4 масс Земли, что приводит к верхнему пределу на среднюю плотность в 3.9 г/куб.см. Это значит, что планета в любом случае не может быть чисто железокаменной и неизбежно включает в себя заметное количество летучих веществ – водяного пара и/или водорода и гелия.
Kepler-99 (KOI-305, KIC 6063220)
Наконец, Kepler-99 b – еще одна планета с радиусом ~1.5 радиусов Земли (более строго он оценивается в 1.48 ± 0.08 земных радиусов). Ее масса равна 6.15 ± 1.3 радиусов Земли, что приводит к средней плотности 10.9 ± 2.8 г/куб.см. В отличие от предыдущих планет, состав которых неясен, Kepler-99 b – явная железокаменная планета, этакий супермеркурий. Она вращается вокруг своей звезды – оранжевого карлика спектрального класса K – на расстоянии 0.05 а.е. и делает один оборот за 4.60358 земных суток.
Изучение планет Кеплера показывает, что планеты размером 1.5-2 радиусов Земли могут иметь самый разный состав и среднюю плотность – от мини-нетунов с заметным содержанием льдов и водородно-гелиевой оболочкой до железокаменных планет земного типа. Однако планеты с радиусом в 2 радиуса Земли и выше все имеют низкую среднюю плотность, что говорит о существенной доле летучих в их составе, пишет сайт Планетные системы.
14/02/2014
Ученые впервые составили полную геологическую карту спутника Юпитера Ганимеда, собрав снимки зонда "Галилео" (за 1995-2003 годы) и обоих "Вояджеров" (за 1979 год), говорится в сообщении НАСА.
"Эта карта показывает огромное разнообразие геологических деталей Ганимеда и помогает упорядочить кажущийся хаос его сложной поверхности. Эта карта поможет планетологам расшифровать эволюцию этого ледяного спутника и пригодится при отправке зондов к Ганимеду", — пояснил Джеффри Коллинз (Geoffrey Collins) из колледжа Уитон в Массачусетсе (США), чьи слова приводятся в сообщении.
На поверхности Ганимеда отчетливо различаются темные, старые породы, с многочисленными кратерами, и более светлые и поздние области с большим количеством борозд и хребтов. Ученые выделяют три основных геологических периода в истории Ганимеда: в первом поверхность спутника формировали метеоритные удары, затем был период тектонической активности и время ее угасания.
Новая карта Ганимеда, масштаб которой 150 километров на 1 сантиметр, позволила ученым отвергнуть некоторые гипотезы, касающиеся его геологического прошлого. Например, предположение о том, что на Ганимеде могли быть криовулканы, выбрасывавшие на поверхность планеты воду и лед, передает РИА Новости.
14/02/2014
Космические объекты размером около 20 метров, согласно последним данным, падают на Землю значительно чаще, чем считалось ранее — не 1 раз, а 5 раз за 100 лет, сообщили на пресс конференции в четверг уральские ученые.
Метеорит, впоследствии названный "Челябинск", упал 15 февраля 2013 года в озеро Чебаркуль Челябинской области. Ударная волна повредила здания и выбила множество стекол в Челябинске, более 1,6 тысячи человек пострадали.
"Это событие заставило многие научные коллективы пересмотреть свои оценки. Были оценки, что тела такого размера — 20 метров — падают примерно раз в сто лет. Но сейчас уже появляются предположения, основанные на инфразвуковых наблюдениях, что такие падения происходят в несколько раз чаще — может быть, и пять раз за столетие", — отметил доцент Челябинского госуниверситета (ЧелГУ) Сергей Замоздра.
Член комитета по метеоритам РАН и Международного метеоритного общества, доцент Уральского федерального университета Виктор Гроховский также отметил, что среди ученых сейчас есть мнение, "что вероятность и частоту падения надо сдвинуть в сторону более "опасной", передает РИА Новости.
13/02/2014
Российский космический аппарат "Спектр-Р" ("Радиоастрон") вошел в книгу рекордов Гиннесса как самый большой космический радиотелескоп, сообщает Астрокосмический центр Физического института имени Лебедева (ФИАН).
"Самый большой космический радиотелескоп — "Спектр-Р" диаметром 10 метров, который был запущен с космодрома Байконур в Казахстане 11 июля 2011 года", — говорится в официальном сертификате книги Гиннесса.
"Этот сертификат — результат научно-технического успеха проекта "Спектр-Р" 2011 года, который подтвержден результатами полетных испытаний, опубликованными в "Астрономическом журнале"… Научные группы сейчас активно обрабатывают данные "Радиоастрона" и готовят научные публикации", — сказал РИА Новости Юрий Ковалев, завлабораторией Астрокосмического центра ФИАН.
Он добавил, что во время выполнения научной программы проекта "Радиоастрон" уже поставлено около десятка других рекордов, и не исключено, что они будут отмечены похожим образом.
13/02/2014
Китайские специалисты констатировали исправное состояние лунохода "Юйту" сообщает в четверг Франс Пресс со ссылкой на агентство Синьхуа.
"Он вернулся к жизни. По крайней мере, он работает, и есть шанс, что мы его спасем", — цитирует Синьхуа представителя программы по изучению Луны. Агентство отмечает, что аппарат способен принимать сигналы, хотя в его работе все еще наблюдаются неполадки.
Представитель лунной программы подтвердил, что ранее аппарат находился в аварийном состоянии. "Изначально мы опасались, что он может не перенести крайне низкие температуры лунной ночи", — отметил ученый.
Неполадки в системе лунохода были выявлены еще 25 января. В заявлении государственного управления оборонной науки, технологий и промышленности Китая отмечалось, что возникли они из-за "сложного рельефа лунной поверхности". Отклонения в работе аппарата были выявлены незадолго до того, как луноход вновь перешел в спящий режим в связи с наступлением "лунной ночи".
В среду китайское информационное агентство China News Service сообщило, что луноход досрочно прекратил работу. По данным агентства, 10 февраля, когда на Луне наступил "день", специалисты безуспешно пытались активировать аппарат, передает РИА Новости.
11/02/2014
Российская сторона не испытывает финансовых трудностей с реализацией первого этапа проекта "ЭкзоМарс", сообщил "Интерфаксу-АВН" директор Института космических исследований (ИКИ) РАН Лев Зелёный.
"На 2016 год с финансированием все в порядке. Фактически мы делаем два прибора и оплачиваем носитель (ракету-носитель "Протон-М" и разгонный блок "Бриз-М", - ИФ-АВН)", - рассказал он.
По миссии 2018 года ситуация более сложная, отметил Зелёный. "Там мы делаем дорогую платформу, и в Роскосмосе есть некий дефицит бюджета по этой теме. Но и этот вопрос, я думаю, будет решен положительно", - добавил он.
Глава ИКИ считает финансовые проблемы не самыми главными в совместном российско-еврпопейском проекте "ЭкзоМарс". "В проекте множество технических проблем, которые надо преодолеть. Один ровер весит 350 килограмм. Это - серьезная конструкция. Мы должны его мягко посадить, обеспечить съезд с платформы и запустить после этого десяток наших приборов. Основные проблемы прячутся в технической стороне", - сказал Зелёный.
10/02/2014
 Астрономы из Австралийского национального университета и Массачусетского технологического института обнаружили звезду, предполагаемый возраст которой составляет 13,7 миллиарда лет. При возрасте Вселенной в 13,77 миллиарда лет звезда является наиболее ранней из известных на сегодняшний день. Результаты исследования приняты к публикации в Nature, но доступны пока только в виде препринта. Кратко о них можно прочитать на сайтах ANU и MIT.
Датировка звезды, получившей название SMSS J031300.36-670839.3, основана на необычно низком содержании в ней железа. Поскольку во время Большого взрыва образовались только легкие элементы (водород, гелий и литий), а остальные появились позже, в недрах первых звезд, то чем меньше в составе звезды железа, тем она в целом древнее. Содержание этого элемента в SMSS J031300.36-670839.3 как минимум в 10 миллионов раз ниже, чем в Солнце, и находится на уровне погрешности метода измерения.
Тем не менее, найденная учеными звезда не является первичной. По словам авторов, она принадлежит ко второму поколению звезд, которые образовались из материала первых взорвавшихся светил.
Ценность такой находки увеличивается именно тем, что изучая химический состав древних светил, можно «заглянуть» в историю самых первых звезд. Так, низкое содержание железа при высокой концентрации углерода в найденной учеными звезде позволяет предположить, что взрыв первичной звезды, из материала которой образовалась SMSS J031300.36-670839.3, был неожиданно слабым. Взрыв не смог основательно перемешать элементы и, по-видимому, сохранил тяжелое железное ядро первичной звезды.
Звезда SMSS J031300.36-670839.3 побила рекорд древности, установленный звездой HD 140283, открытой в начале 2013 года. Возраст последней составил 13,2 миллиарда лет. Обе звезды расположены относительно близко к Земле: в 186 световых годах HD 140283 и в 6 тысячах световых лет SMSS J031300.36-670839.3.
07/02/2014
Трехпланетная система Kepler-9 была первой из систем, открытых с помощью космического телескопа им. Кеплера, в которой массы планеты были измерены с помощью тайминга транзитов (иначе говоря, TTV-методом). Тайминг транзитов в этой системе облегчался тем, что обе взаимодействующие планеты были планетами-гигантами, дающими глубокий и четкий транзитный сигнал, а взаимное влияние их было так велико, что вариации времени наступления транзитов достигали 3-4 суток. Массы обоих гигантов, измеренные TTV-методом на основе фотометрических данных за первые ~250 дней, были оценены в 79.6 ± 3.6 масс Земли для планеты b (орбитальный период 19.216 земных суток) и в 54.8 ± 2.6 масс Земли для планеты c (орбитальный период 39.084 земных суток).
Однако характерный период динамического взаимодействия обеих планет (TTV-период) был существенно больше 250 дней, что привело к экстраполяции данных и неизбежным погрешностям в определении масс планет. Проанализировав фотометрию Кеплера за все 16 наблюдательных кварталов, немецкие астрономы Штефан Драйцлер (Stefan Dreizler) и Авив Офир (Aviv Ofir) пришли к другим, существенно меньшим значениям масс: 45.1 ± 1.5 масс Земли для планеты b и 31 ± 1 масс Земли для планеты c. При этом радиусы планет даже слегка увеличились до 11.1 ± 0.1 и 10.7 ± 0.1 радиусов Земли, что говорит о крайней «рыхлости» обоих субсатурнов. Средняя плотность планеты b с учетом новых данных оказалась равной 0.18 ± 0.01 г/куб.см, а планеты c – 0.14 ± 0.01 г/куб.см.
При этом новые значения масс плохо согласуются с данными, полученными методом измерения лучевой скорости Kepler-9 в 2010 году. Это может означать, что в системе есть дополнительные нетранзитные планеты, которые влияют на лучевую скорость своей звезды. Авторы исследования призывают продолжить плотный мониторинг лучевой скорости звезды Kepler-9 для более ясного понимания строения этой планетной системы, пишет сайт Планетные системы.
07/02/2014
Физики NASA и Массачусетского технологического института обнаружили, что магнитосфера Земли реагирует на вспышки солнечной активности образованием плазменных потоков. По словам ученых, они уменьшают влияние солнечного ветра на ионосферу Земли. Работа опубликована в журнале Science, кратко о ней можно прочитать на сайте MIT.
Выводы ученых основаны на измерениях магнитного поля как с Земли, так и из космоса. Наблюдения с Земли проводились с помощью тысячи GPS ресиверов. Основываясь на искажениях в их данных, ученые могли рассчитать концентрацию в атмосфере заряженных частиц.
Наземные измерения в начале 2013 года удалось дополнить наблюдениями из космоса, проведенными американским аппаратом THEMIS. Во время январской вспышки солнечной активности он находился в области соединения магнитных полей и обнаружил 100-кратный избыток электронов в магнитосфере. По словам ученых, эти заряженные частицы выступили в роли буфера, который в некоторой степени изолировал магнитное поле Земли от солнечной магнитной активности.
Наиболее яркое проявление магнитной активности Солнца — образование на его поверхности пятен и вспышек. Последние при достижении Земли могут приводить к нарушению работы электронных приборов и сказываться на самочувствии некоторых людей. Наряду с атмосферой, магнитное поле Земли защищает ее поверхность от солнечной радиации, что имеет важное значение для развития жизни.
07/02/2014
 Запущенный в космос в конце прошлого года телескоп «Гайя» получил первые тестовые изображения. Одно из них, на котором виден звездный кластер в Большом Магеллановом облаке, опубликовало Европейское космическое агентство ESA.
На изображении виден кластер молодых звезд NGC 1818, удаленный от Земли на 164 световых года. Изображение снято без светофильтров и занимает примерно один процент от общего поля зрения «Гайи». Большое Магелланово облако, где расположено скопление NGC 1818, является одной из сателлитных галактик Млечного пути.
Тестовые изображения предназначены для фокусировки и настройки телескопа. После того, как она будет проведена, «Гайя» больше не будет отправлять на Землю подобные снимки. Поскольку основная задача телескопа — составление рекордно точной трехмерной карты Млечного пути, вместо широкоформатных изображений аппарат будет передавать небольшие снимки отдельных звезд. Общее число снятых звезд должно достигнуть отметки в один миллиард, то есть около одного процента от всех звезд Млечного пути. Причем каждое из светил планируется зафиксировать как минимум 70 раз.
Необходимость в большом количестве изображений связана с способом измерения расстояний, который применяет «Гайа» для составления карты нашей галактики. Он называется методом астрономического параллакса и основан на том, что звезды Галактики изменяют свое положение на фоне более далеких объектов при движении Земли по орбите. Поскольку телескоп обладает очень высоким угловым разрешением (25 микросекунд — ширина монетки на Луне при взгляде с Земли), малейшие изменения положения звезд астрономы смогут перевести в расстояния до них. Подробная карта Млечного пути, которую собирается составить Гайа, сможет рассказать астрофизикам о распределении во Млечном пути темной материи.
Телескоп был запущен ESA 19 декабря с космодрома Куру во Французской Гвиане. Запуску предшествовало нескольких задержек, связанных с перепроверкой оборудования. Аппарат стартовал на российской ракете-носителе «Союз».
07/02/2014
 Национальное управление по воздухоплаванию и исследованию космического пространства (NASA) США обнародовало рентгеновский снимок галактики Центавр А, составленный из множества фотографий такого типа, которые сделала космическая рентгеновская обсерватория «Чандра» в период с 5 декабря 1999-го по 29 августа 2012 года. Согласно сообщению NASA, на рентгеновском снимке Центавр А содержатся данные, эквивалентные девяти дням 13 часам и 57 минутам наблюдений.
Для составления рентгеновского снимка использовались фотографии, сделанные в ходе 21 наблюдения телескопа «Чандра». На полученном изображении красный, зеленый и синий цвета означают рентгеновские лучи низкой, средней и высокой энергии соответственно. На новом снимке Центавр А (как и на прежних) отчетливо видно гигантское образование, тянущееся от середины галактики по диагонали вверх и влево.
Фотография также показывает пылевую полосу, растянутую вокруг Центавр А. Ученые полагают, что пылевая полоса образовалась в результате столкновения Центавр А с другой, меньшей галактикой несколько миллионов лет назад. На основе нового снимка галактики Центавр А, размер которого в ширину составляет 58 тысяч световых лет, ученые намерены провести ряд исследований.
Центавр А является линзообразной галактикой с полярным кольцом, расположенной в созвездии Центавра. От Земли она расположена на расстоянии 12 миллионов световых лет. Центавр А является самым мощным источником радиоизлучения в созвездии Центавра и ближайшей к Земле активной галактикой.
07/02/2014
Изменение средней лучевой скорости звезды во время транзита планеты по ее диску (т.н. эффект Мак-Лафлина) позволяет измерить угол наклона оси орбиты планеты к оси вращения звезды. В Солнечной системе эти углы достаточно малы (так, для Земли он близок к 7°), однако многие транзитные горячие юпитеры демонстрируют сильный наклон своих орбит к звездному экватору. Некоторые из них находятся на полярных ( HAT-P-30 b, WASP-1 b) и даже ретроградных орбитах ( WASP-2 b, WASP-17 b).
Резкий наклон орбит планет к экватору звезды отражает их бурную динамическую историю. Вероятнее всего, значительная часть горячих юпитеров оказалась на своих текущих орбитах в результате планет-планетного рассеяния с последующим скруглением получившихся высокоэксцентричных орбит приливными силами. Альтернативная гипотеза происхождения горячих юпитеров (миграция в протопланетном диске) предсказывает малый наклон орбит планет к звездному экватору. Пока из 74 планет, у которых был измерен этот наклон, 33 находятся на резко наклоненных орбитах и 10 – на ретроградных.
Интересно, что доля планет на наклонных орбитах заметно увеличивается для звезд с температурой фотосферы выше ~6250К (т.е. с массой больше 1.2 масс Солнца). Ученые объясняют это тем, что у сравнительно горячих звезд конвективная оболочка становится слишком тонкой, приливные силы, стремящиеся развернуть орбиту планеты и приблизить ее плоскость к плоскости звездного экватора, слабеют, и планета долго остается на наклонной орбите. В то же время приливные силы со стороны более холодных звезд, у которых внешняя конвективная оболочка более протяженная и массивная, оказываются сильнее, и орбита планета сравнительно быстро (за несколько миллиардов лет) «забывает» свою динамическую историю, оказываясь на проградной круговой орбите, расположенной в плоскости экватора звезды.
6 февраля 2014 года в Архиве электронных препринтов появилась статья, посвященная измерению наклона орбит к экватору звезды у двух транзитных горячих гигантов WASP-20 b и WASP-28 b. Как оказалось, планета WASP-20 b была открыта еще в 2011 году, но в тот момент я ее прозевала, в базу не добавила и ничего о ней не написала. Исправляю эту оплошность.
Итак, WASP-20 b – рыхлый горячий сатурн, вращающийся вокруг своей звезды на расстоянии 0.0600 ± 0.0007 а.е. (9.3 звездных радиусов) и делающий один оборот за 4.9 земных суток. При массе 0.31 ± 0.02 масс Юпитера его радиус достигает 1.46 ± 0.06 радиусов Юпитера, что приводит к средней плотности всего 0.13 +0.02/ -0.01 г/куб.см. Эффективная температура планеты, вычисленная в предположении нулевого альбедо, составляет 1379 ± 32К.
Родительская звезда WASP-20 немного массивнее и ярче Солнца. Ее спектральный класс F9, масса на 20 ± 4%, а радиус на 39 ± 4.4% превышают массу и радиус Солнца, соответственно. Возраст звезды оценивается в 7 +2/ -1 млрд. лет.
Наклон орбиты планеты WASP-20 b оценивается в 8.1 ± 3.6°, а наклон орбиты горячего гиганта WASP-28 b – в 8 ± 18° (такая большая погрешность вызвана низким прицельным параметром этой планеты, которая заходит на звездный диск близко к его краю).
Поскольку характерное время «разворота» орбит этих планет (т.е. приведения их в экваториальную плоскость звезды) превышает 10 12 лет, авторы статьи делают вывод, что обе планеты оказались на своих орбитах в результате миграции в протопланетном диске, а не в результате планет-планетного рассеяния, пишет сайт Планетные системы.
|
|
|