Ответы к билетам по астрономии

Ответы                        шпаргалка

Билет 1. Земля совершает сложные движения: вращается вокруг своей оси (Т=24 ч.), движется вокруг Солнца (Т=1 год), вращается вместе с Галактикой (Т= 200 тыс. лет). Отсюда видно, что все наблюдения, совершаемые с Земли, отличаются кажущимися траекториями.
Планеты перемещаются по небосводу то с востока на запад (прямое движение), то с запада на восток (попятное движение). Моменты смены направления называются стояниями. Если нанести этот путь на карту, получится петля (рис 18 учебника).
Размеры петли тем меньше, чем больше расстояние между планетой и Землей.  Планеты делятся на нижние и верхние (нижние – внутри земной орбиты: Меркурий, Венера; верхние: Марс, Юпитер, Сатурн, Уран, Нептун и Плутон). Все эти планеты обращаются так же, как и Земля вокруг Солнца, но, благодаря движению Земли, можно наблюдать петлеобразное движение планет. Взаимные расположения планет относительно Солнца и Земли называются конфигурациями планет.
Благодаря сложному движению Земли и планет возникают различные конфигурации планет (рисунок урок 7).
для внутренних планет      для внешних планет
S – сидерический период (относительно звёзд), Т – синодический период (между фазами), ТÅ = 1 год. Планеты движутся вокруг Солнца в одном направлении и совершают полный оборот вокруг Солнца за промежуток времени=сидерическому периоду.
   Кометы и метеоритные тела движутся по эллиптическим, параболическим и гиперболическим траекториям.

Билет № 2. Существует 2 географические координаты: географическая широта и географическая долгота. Астрономия как практическая наука позволяет находить эти координаты (рисунок “высота светила в верхней кульминации”). Высота полюса мира над горизонтом равна широте места наблюдения. Можно определить широту места наблюдения по высоте светила в верхней кульминации (Кульминация – момент прохождения светила через меридиан) по формуле:   h = 90° – j + d , где h – высота светила, d – склонение, j – широта.
Географическая долгота – это вторая координата, отсчитывается от нулевого Гринвичского меридиана к востоку. Земля разделена на 24 часовых пояса, разница во времени – 1 час. Разница местных времён равна разнице долгот:
l мl Гр = tм – tГр
    Местное время – это солнечное время в данном месте Земли. В каждой точке местное время различно, поэтому люди живут по поясному времени, т. е. по времени среднего меридиана данного пояса. Линия изменения даты проходит на востоке (Берингов пролив).

Билет № 3. Луна движется вокруг Земли в ту же сторону, в какую Земля вращается вокруг своей оси. Отображением этого движения, как мы знаем, является видимое перемещение Луны на фоне звёзд навстречу вращению неба. Каждые сутки Луна смещается к востоку относительно звёзд примерно на 13° , а через 27,3 сут возвращается к тем же звёздам, описав на небесной сфере полный круг.
    Фаза, в астрономии смена фаз происходит из-за периодического изменения условий освещенности небесных тел по отношению к наблюдателю. Cмена фаз Луны обусловлена изменением взаимного положения Земли, Луны и Солнца, а также тем, что Луна светит отраженным от него светом. Когда Луна находится между Солнцем и Землей на прямой, соединяющей их, к Земле обращена неосвещенная часть лунной поверхности, поэтому мы ее не видим. Эта фаза — новолуние. Через 1— 2 суток Луна отходит от этой прямой, и с Земли виден узкий лунный серп. Во время новолуния та часть Луны, края не освещена прямыми солнечными лучами, все же видна на темном небе. Это явление назвали пепельным светом. Через неделю наступает фаза — первая четверть: освещенная часть Луны составляет половину диска. Затем наступает полнолуние — Луна находится опять на линии, соединяющей Солнце и Землю, но по др. сторону Земли. Виден освещенный полный диск Луны. Затем начинается убывание видимой части и наступает последняя четверть, т.е. опять можно наблюдать освещенным половину диска. Полный период смены фаз Луны называется синодическим месяцем.
    Затмение, астрономическое явление, при котором одно небесное тело полностью или частично закрывает другое или тень одного тела падает на другое. Земля и Луна, освещённые Солнцем, отбрасывают конусы тени и конусы полутени. Когда Луна попадает в тень Земли полностью или частично происходит полное или частное затмение Луны. С Земли оно видно одновременно повсюду, где Луна над горизонтом. Фаза полного затмения Луны продолжается, пока Луна не начнёт выходить из земной тени, и может длиться до 1 ч 45 мин. Солнечные лучи, преломляясь в атмосфере Земли, попадают в конус земной тени. При этом атмосфера сильно поглощает голубые и соседние с ними лучи, а пропускает внутрь конуса преимущественно красные. Вот почему Луна при большой фазе затмения окрашивается в красноватый свет, а не пропадает совсем. Лунные затмения бывают до трёх раз в году и, конечно, только в полнолуние.
     Солнечное затмение как полное видно только там, где на Землю падает пятно лунной тени, диаметр пятна не превышает 250 км. Когда Луна перемещается по своей орбите, её тень движется по Земле с запада на восток, вычерчивая последовательно узкую полосу полного затмения. Там, где на Землю падает полутень Луны, наблюдается частное затмение Солнца.
     Вследствие небольшого изменения расстояний Земли от Луны и Солнца видимый угловой диаметр бывает то немного больше, то немного меньше солнечного, то равен ему. В первом случае полное затмение Солнца длится до 7 мин 40 с, во втором – Луна вообще не закрывает Солнца целиком, а в третьем – только одно мгновение.
     Солнечных затмений в году может быть от 2 до 5, в последнем случае непременно частных.
    Время, длительность и картина солнечного или лунного затмений  зависят от геометрии системы Земля—Луна—Солнце. Из-за наклона лунной орбиты относительно эклиптики, солнечные и лунные затмения происходят не в каждое новолуние или полнолуние. Сравнение предсказания затмения с наблюдениями позволяет уточнить теорию движения Луны. Поскольку геометрия системы почти точно повторяется каждые 18 лет 10 суток, затмения происходят с этим периодом, называемым саросом. Регистрации затмений с древних времен позволяют проверить воздействие приливов на лунную орбиту.

Билет № 4. В течение года Солнце движется по эклиптике. Эклиптика проходит через 12 зодиакальных созвездий. В течение суток Солнце, как обычная звезда, движется параллельно небесному экватору. Полный оборот вокруг Солнца Земля совершает за год, за одни сутки Солнце смещается по эклиптике с запада на восток примерно на 1°, а за 3 месяца - на 90°. Однако на данном этапе важно, что с перемещение Солнца по эклиптике сопровождается изменением его склонения в пределах (-23°26¢ £ d £ +23°26¢) , где 23°26¢ – угол наклона земной оси. Поэтому в течении года меняется и расположение суточной параллели Солнца. Рассмотрим средние широты северного полушария.
   Такое изменение склонения вызвано наклоном земной оси к плоскости орбиты.
21 марта (
g ) – день весеннего равноденствия (d = 0). В этот день Солнце находится практически на небесном экваторе, восходит на востоке, поднимается в верхней кульминации на высоту h = 90° - j и заходит на западе. Поскольку небесный экватор делит небесную сферу пополам, то Солнце половину суток находится над горизонтом, половину - под ним, т.е. день равен ночи, что и отражено в названии "равноденствие". В момент равноденствия касательная к эклиптике в месте нахождения Солнца наклонена к экватору на максимальный угол, равный e, поэтому и скорость увеличения склонения Солнца в это время также максимальна. После весеннего равноденствия склонение Солнца быстро увеличивается, поэтому с каждым днем все большая часть суточной параллели Солнца оказывается над горизонтом. Солнце восходит все раньше, поднимается в верхней кульминации все выше и заходит все позже. Точки восхода и захода каждый день смещаются к северу, а день удлиняется.
22 июня – день летнего солнцестояния (
d = 23° 26¢). Солнце достигает самой северной точки эклиптики (α = 6ч, d = +e ). К этому моменту оно поднимается в верхней кульминации на высоту h = 90° - j + e, восходит примерно на северо-востоке, заходит на северо-западе, и продолжительность дня достигает максимального значения. Вместе с тем ежедневное увеличение высоты Солнца в верхней кульминации прекращается, и полуденное Солнце как бы "останавливается" в своем движении на север. Отсюда и название "летнее солнцестояние". После этого склонение Солнца начинает уменьшаться - сначала очень медленно, а затем все быстрее. Восходит оно с каждым дне позже, заходит раньше, точки восхода и захода перемещаются обратно, к югу.
21 сентября (
W ) – день осеннего равноденствия. Солнце достигает второй точки пересечения эклиптики с экватором (α = 12ч), и снова наступает равноденствие, теперь уже осеннее. Снова скорость изменения склонения Солнца достигает максимума, и оно быстро смещается к югу. Ночь становится длиннее дня, и с каждым днем высота Солнце в верхней кульминации уменьшается.
22 декабря – день зимнего солнцестояния. Солнце достигает самой южной точки эклиптики (α = 18ч) и его движение на юг прекращается, оно снова "останавливается". Это зимнее солнцестояние. Солнце восходит почти на юго-востоке, заходит на юго-западе, а в полдень поднимается на юге на высоту h = 90° -
j - e.
     А после все начинается сначала - склонение Солнца увеличивается, высота в верхней кульминации растет, день удлиняется, точки восхода и захода смещаются к северу.
    Из-за рассеивания света земной атмосферой небо продолжает оставаться светлым и некоторое время после захода Солнца. Этот период называется сумерками. По глубине погружения Солнца под горизонт различаются сумерки гражданские (-8°<h<0°), когда еще совсем светло, навигационные (h>-12°) и астрономические (h>-18°), по окончании которых яркость ночного неба остается примерно постоянной.
   На широте тропиков Рака (Южный) и Козерога (Северный) Солнце бывает в зените в дни летнего и зимнего солнцестояния.
На Северном полюсе Солнце и звёзды не заходят в период с 21 марта по 22 сентября. 22 сентября начинается полярная ночь.
   Летом, при
d = +e, высота Солнца в нижней кульминации равна h = j + e - 90°. Поэтому севернее широты ~ 48°.5 в летнее солнцестояние Солнце в нижней кульминации погружается под горизонт меньше, чем на 18°, и летние ночи становятся светлыми из-за астрономических сумерек (южнее широты j = 90° - e - 18° ночи всегда темные). Аналогично при j > 54°.5 в летнее солнцестояние высота Солнца h > -12° - всю ночь длятся навигационные сумерки (в эту зону попадает Москва, где не темнеет по три месяца в году - с начала мая до начала августа). Еще севернее, при j > 58°.5, летом уже не прекращаются гражданские сумерки (здесь расположен Петербург с его знаменитыми "белыми ночами").

Билет № 5. Телескоп, астрономический прибор для наблюдения небесных светил. Хорошо сконструированный телескоп способен собирать электромагнитное излучение в различных диапазо­нах спектра. В астрономии оптический телескоп предназначен для увеличения изображения и сбора света от слабых источников, особенно невидимых невооруженным глазом, т.к. по сравнению с ним способен собирать больше света и обеспечивать высокое угловое разрешение, поэтому в увеличенном изображении можно видеть больше деталей. В телескопе-рефракторе в качестве объектива используется большая линза, собирающая и фокусирующая свет, а изображение рассматривается с помощью окуляра, состоящего из одной или нескольких линз. Основной проблемой при конструировании телескопов-рефракторов является хроматическая аберрация (цветная кайма вокруг изображения, создаваемого простой линзой вследствие того, что свет различных длин волн фокусируется на разных расстояниях). Её можно устранить, используя комбинацию выпуклой и вогнутой линз, однако линзы больше некоторого предельного размера (около 1 метра в диаметре) изготовить невозможно. Поэтому в настоящее время предпочтение отдаются телескопам-рефлекторам, в которых в качестве объектива используется зеркало. (рисунки из урока 1) Первый телескоп-рефлектор изобрел Ньютон по своей схеме, называемой системой Ньютона. Сейчас существует несколько методов наблюдения изображения: системы Ньютона, Кассегрена (положение фокуса удобно для регистрации и анализа света с помощью других приборов, таких, как фотометр или спектрометр), Куде (схема очень удобна, когда для анализа света требуется громоздкое оборудование), Максутова (т.н. менисковая), Шмидта (применяется, когда необходимо сделать масштабные обзоры неба).
    Наряду с оптическими телескопами имеются телескопы, собирающие электромагнитное излучение в других диапазонах. Например, широко распространены различные типы радиотелескопов (с параболическим зеркалом: неподвижные и полноповоротные; типа РАТАН-600; синфазные; радиоинтерферометры). Земная атмосфера задерживает часть идущего из космоса излучения. Видимый свет, проходя через нее, тоже искажается: движение воздуха размывает изображение небесных тел, и звезды мерцают, хотя на самом деле их яркость неизменна. Поэтому с середины XX века астрономы начали вести наблюдения из космоса. Вне атмосферные телескопы собирают и анализируют рентгеновское, ультрафиолетовое, инфракрасное и гамма излучения. Первые три можно изучать лишь вне атмосферы, последнее же частично достигает поверхности Земли, но смешивается с ИК самой планеты. Поэтому предпочтительней выносить инфракрасные телескопы в космос. Рентгеновское излучение выявляет во Вселенной области, где особенно бурно выделяется энергия (например черные дыры), а также невидимые в других лучах объекты, например пульсары. Инфракрасные телескопы позволяют исследовать тепловые источники, скрытые для оптики, в большом диапазоне температур. Гамма-астрономия позволяет обнаружить источники электрон-позитронной аннигиляции, т.е. источники больших энергий.
   Создание современных космических станций, кораблей многоразового использования, а также запуск космических кораблей к планетам (“Вега”, “Марс”, “Луна”, “Вояджер”, “Гермес”) позволили установить на них телескопы, через которые можно наблюдать эти светила вблизи без атмосферных помех. Кроме того используются специально разработанные и выведенные на орбиту телескопы, к примеру запущенные после 2000 года: MAP (WMAP, 2001г) - исследование микроволнового излучения, CHIPS (2003г) - исследование далекого ультрафиолета, GALEX (2003г) - исследование галактик и поиск источников ультрафиолетового излучения, Spitzer (2003г) - наблюдение Вселенной в инфракрасных лучах, Swift (2004г) - исследование рентгеновских источников, Astro-E2 (2005г) рентгеновские исследования и ASTRO-F (2006г) - инфракрасные наблюдения, GLAST (имя Fermi, 2008г) - для изучения космических источников гамма-излучения, Kepler (2009г)- видимый диапазон 430-890 нм (захватывает инфракрасную область).

Билет № 6.  Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.
p² – параллакс, r ² – угловой радиус, R – радиус Земли, r – радиус светила.

Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный импульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.
Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.
Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации анало­гичен радиолокации, однако точность измерения значи­тельно выше. Оптическая локация дает возможность опреде­лить расстояние между выбранными точками лунной и зем­ной поверхности с точностью до сантиметров.
    Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° -n.

Билет № 7. Разложение электромагнитного излучения по длинам волн с целью их изучения называется спектроскопией. Анализ спектров, проводимый с помощью спектрографа и спектроскопа – основной метод изучения астрономических объектов, применяемый в астрофизике. Изучение спектров дает информацию о температуре звёзд и других тел, скорости, давлении, химическом составе и о других важнейших свойствах астрономических объектов. По спектру поглощения (точнее, по наличию определенных линий в спектре) можно судить о химическом составе атмосферы звезды. По интенсивности спектра можно определить температуру звёзд и других тел: из Закона ВИНА l maxT = b, где b – постоянная Вина.
   Многое о звезде можно узнать при помощи эффекта Допплера. В 1842 году он установил, что длина волны, принятая наблюдателем, связана с длиной волны источника излучения соотношением: ,где v– проекция скорости источника на луч зрения.
    Смещение линий в спектре звезды относительно спектра сравнения в красную сторону говорит о том, что звезда удаляется от нас, смещение в фиолетовую сторону спектра – что звезда приближается к нам. Если линии в спектре периодически изменяются, то звезда имеет спутник и они обращаются вокруг общего центра масс. Эффект Доплера также дает возможность оценить скорость вращения звезд. Даже когда излучающий газ не имеет относительного движения, спектральные линии, излучаемые отдельными атомами, будут смещаться относительно лабораторного значения из-за беспорядочного теплового движения. Для общей массы газа это будет выражаться в уширении спектральных линий. При этом квадрат доплеровской ширины спектральной линии пропорционален температуре. Таким образом, по ширине спектральной линии можно судить о температуре излучающего газа. В 1896 году нидерландским физиком Зееманом был открыт эффект расщепления линий спектра в сильном магнитном поле. С помощью этого эффекта теперь стало возможно «измерять» космические магнитные поля. Похожий эффект (он называется эффектом Штарка) наблюдается в электрическом поле. Он проявляется, когда в звезде кратковременно возникает сильное электрическое поле.
    По спектру звёзды относят к тому или иному спектральному классу. По спектральной диаграмме можно определить видимую звёздную величину звезды, а далее пользуясь формулами:  M = m + 5 + 5lg p и lg L = 0,4(5 – M) найти абсолютную звёздную величину, светимость, а значит и размер звезды.

Билет № 8. Начало космической эры положено трудами русского учёного К. Э. Циолковского. Он предложил использовать реактивные двигатели для освоения космического пространства. Он впервые предложил идею использования многоступенчатых ракет для запусков космических кораблей. Россия была пионером в этом замысле. Первый искусственный спутник Земли был запущен 4 октября 1957г, первый облёт Луны с получением фотографий – 1959г, первый полёт человека в космос – 12 апреля 1961г. Первый полёт на Луну американцев – 1969г, запуск космических кораблей различного назначения и космических станций.
1. Научные цели:

 

 

Билет № 1.

  • пребывание человека в космосе;

  • исследование космического пространства;

  • отработка технологий космических полётов;

  1. Военные цели (защита от ядерного нападения);

  2. Телекоммуникации (спутниковая связь, осуществляемая с помощью спутников связи);

  3. Прогнозы погоды, предсказание стихийных бедствий (метео-спутники);

  4. Производственные цели:

    • поиск полезных ископаемых;

    • экологический мониторинг.

2. Основные проблемы современной астрономии:
Нет решения многих частных проблем космогонии:
·   Как сформировалась Луна, как образовались кольца вокруг планет-гигантов, почему Венера вращается очень медленно и в обратном направлении;
В звездной астрономии:
·        Нет детальной модели Солнца, способной точно объяснить все его наблюдаемые свойства (в частности, поток нейтрино из ядра).
·        Нет детальной физической теории некоторых проявлений звёздной активности. Например, не до конца ясны причины взрыва сверхновых звёзд; не совсем понятно, почему из окрестностей некоторых звёзд вы­брасываются узкие струи газа. Однако особенно загадочны короткие вспышки гамма-излучения, регулярно происходящие в различных направлениях на небе. Не ясно даже, связаны ли они со звёздами или с иными объектами, и на каком расстоянии от нас находятся эти объекты.
В галактической и внегалактической астрономии:
·              Не решена проблема скрытой массы, состоящая в том, что гравитационное поле галактик и скоплений галактик в несколько раз сильнее, чем это может обеспечить наблюдаемое вещество. Вероятно, большая часть вещества Вселенной до сих пор скрыта от астрономов;
·              Нет единой теории формирования галактик;
·              Не решены основные проблемы космологии: нет законченной физи­ческой теории рождения Вселенной и не ясна её судьба в будущем.
Вот некоторые вопросы, на которые астрономы надеются получить ответы в 21 веке:
·              Существуют ли у ближайших звёзд планеты земного типа и есть ли у них биосферы (есть ли на них жизнь)?
·              Какие процессы способствуют началу формирования звёзд?
·              Как образуются и распространяются по Галактике биологически важные химические элементы, такие, как углерод, кислород?
·              Являются ли чёрные дыры источником энергии активных галактик и квазаров?
·              Где и когда сформировались галактики?
·              Будет ли Вселенная расширяться вечно, или её расширение сменится коллапсом?

Билет № 9. Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.
Первый закон. Каждая планета обращается по эллипсу, в одном из фокусов которого находится Солнце (e = c/a, где с – расстояние от центра эллипса до его фокуса, а- большая полуось, е – эксцентриситет эллипса. Чем больше е, тем больше эллипс отличается от окружности. Если с = 0 (фокусы совпадают с центром), то е = 0 и эллипс превращается в окружность радиусом а). Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.
Второй закон. (закон площадей). Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади. Другая формулировка этого закона: секториальная скорость планеты постоянна. Из этого закона следует, что скорость планеты при движении её по орбите тем больше, чем ближе она к Солнцу.
Третий закон. Квадраты звёздных периодов обращения планет относятся как кубы больших полуосей их орбит.
Этот закон позволил установить относительные расстояния планет от Солнца (в единицах большой полуоси земной орбиты), поскольку звёздные периоды планет уже были вычислены. Большую полуось земной орбиты принята за астрономическую единицу (а. е.) расстояний.
    Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел. В обобщенном виде этот закон обычно формулируется так: квадраты периодов T1 и T2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно M1 и M2) и Солнца (Мс), относятся как кубы больших полуосей a1 и a2 их орбит. При этом взаимодействие между телами M1 и M2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца, то получится формулировка третьего закона, данная самим Кеплером. Третий закон Кеплера можно использовать, чтобы определить массу двойных звезд, период обращения.

Билет № 10. План:

  1. Перечислить все планеты;

  2. Подразделение (планеты земной группы: Меркурий, Марс, Венера, Земля; и планеты-гиганты: Юпитер, Сатурн, Уран, Нептун);

  3. Рассказать об особенностях этих планет исходя из таблицы (ниже);

  4. Указать основные особенности этих планет.

Планеты земной группы: Меркурий, Марс, Венера, Земля. Имеют небольшие размеры и массы, средняя плотность этих планет в несколько раз больше плотности воды.  Они медленно вращаются вокруг своих осей.  У них мало спутников. Планеты земной группы имеют твердые поверхности. Сходство планет земной группы не исключает и значительного различия. Например, Венера в отличие от других планет вращается в направлении, обратном её движению вокруг Солнца, причем в 243 раза медленнее Земли.

Меркурий.
Масса: 3,3*1023  кг (0.055 земной)
R орбиты: 0,387 а.е.
D планеты: 4880 км
Свойства атмосферы:  следы весьма разреженной атмосферы (в 5×1011 раз меньше давления земной атмосферы), которую составляют 31,7 % Калий; 24,9 % Натрий; 9,5 %, А. Кислород; 7,0 % Аргон; 5,9 % Гелий; 5,6 %, М. Кислород; 5,2 % Азот; 3,6 % Углекислый газ; 3,4 % Вода; 3,2 % Водород.
Поверхность: изрыта кратерами, Существует впадина 1300 км в диаметре, именуемая «Бассейн Калорис»
Особенности: Сутки длятся два года.

Венера.
Масса: 4,87*1024кг
R орбиты: 0.723 а.е.
D планеты: 12100 км
Состав атмосферы: углекислый газ (CO2 - 96,5%); азота(N2) — около 3,5% (вместе 99,99%), а остальные Диоксид серы (SO2) - 150 (0,015%), Аргон (Ag) - 70, Вода (H2O) - 20, Угарный газ (CO) - 17, Гелий (He) - 12, Неон (Ne) - 7 — тысячные доли процента. В очень малых количествах имеются также примеси H2S, HCl, HF.
Поверхность: Каменистая пустыня, относительно гладкая, впрочем есть и кратеры
Особенности: Давление у поверхности в 90 раз > земного, обратное вращение по орбите, сильный парниковый эффект (Т=4750С).

Земля.
R орбиты: 1 а.е. (149 600000 км)
R планеты: 6370 км
Состав атмосферы: Азот 78,084% (N2), Кислород 20,946% (O2), а стальные в незначительных долях Аргон (Ag) - 9340; Углекислый газ (CO2) - 350; Неон (Ne) - 18,18; Гелий (He) - 5,24; Метан (CH4) - 1,7; Криптон (Kr) - 1,14; Водород (H2) - 0,55; Водяной пар (переменная величина) - 1%. В нижних 20 км содержится водный пар (у земной поверхности — от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает.
Поверхность: Самая разнообразная.
Особенности: Много воды, условия, необходимые для зарождения и существования жизни. Есть 1 спутник – Луна.

Марс.
Масса: 6.4*1023 кг
R орбиты: 1,52 а.е. (228 млн км)
D планеты: 6770 км
Состав атмосферы: Углекислый газ - 95,72% (CO2); Азот - 2,7% (N2); Аргон - 1,6% (Ar); Кислород - 0,2% (O2); Угарный газ - 0,07% (CO), а также доли процента имеются Водяной пар (H2O) - 210 (существенно меняется в зависимости от сезона); Оксид азота (NO) - 100; Неон (Ne) - 2,5; HDO - 0,85; Криптон (Kr) - 0.3; Ксенон (Xe) - 0,08.
Поверхность: Кратеры, долина «Маринера», гора Олимп – самая высокая в системе.
Особенности: Много воды в полярных шапках, предположительно раньше климат был пригоден для органической жизни на углеродной основе, причем эволюция климата Марса обратима. Есть 2 спутника – Фобос и Деймос. Фобос медленно падает на Марс.

Юпитер

 

Масса: 1.9*1027кг
R орбиты: 5,2 а.е.
D планеты: 143 000 км по экватору
Состав: Атмосфера толщиной в 27км состоит из молекулярный водород (H2) - 81% и Гелий (He) - 18%, а остальные газы в атмосфере составляют доли: Метан (CH4) - 3000 (1000); Аммиак (NH3) - 260 (40); HD - 28 (10); Этан (C2H6) - 5,8 (1,5); Вода (H2O) - 4 (изменяется с давлением).
Спутники: Имеет 63 спутника. На Европе много воды, Ганимед со льдом, Ио с серным вулканом. Имеет слабые кольца.
Особенности: Большое Красное пятно, почти звезда, 10% излучения – собственное, оттягивает у нас Луну (по 2 метра в год).

Сатурн.
Масса: 5,68* 1026
R орбиты: 9,58 а.е.
D планеты: 120 530 км - экваториальный
Состав: состав атмосферы входят молекулярный водород (H2) - 96,3%; Гелий (He) - 3,25%, а также в долях Метан (CH4) - 4500 (2000); Аммиак (NH3) - 125 (75); HD - 110 (58); Этан (C2H6) - 7 (1,5).
Спутники: Имеет 60 спутников. Титан больше Меркурия, имеет атмосферу.
Особенности: Красивые кольца, низкая плотность, полюса магнитного поля практически совпадают с осью вращения.

Уран
Масса: 8,68*1025кг
R орбиты:19,23 а.е.
D планеты: 51 100 км - экваториальный
Состав: Атмосфера Урана высотой 27,7км  состоит из молекулярного водорода (H2) - 82,5%; гелий (He) - 15,2% и метана (CH4) - 2,3%, а также небольшой доли веществ, являющихся результатом фотолиза метана: ацетилен C2H2, диацетилен C4H2, этилен C2H4 и этан C2H6, а также более сложные углеводороды, образующие тонкую надоблачную дымку.
Спутники: 29 спутников, кольца. Миранда имеет очень сложный рельеф.
Особенности: Ось вращения направлена к Солнцу, не излучает собственной энергии, самый большой угол отклонения магнитной оси от оси вращения.
 

Нептун.
Масса: 1,02*1026кг
R орбиты: 30,1 а.е.
D планеты: 49500 км
Состав: атмосфера планеты состоит из молекулярного водорода (H2)  - 80,0%; Гелия (He) - 19,0%; Метана (CH4) - 1%. Присутствуют и другие элементы в долях дейтерий водорода HD - 192; этан (C2H6) - 1,5.
Спутники: 13 спутников. самый большой Тритон имеет азотную атмосферу, воду.
Особенности: Излучает в 2.7 раза больше поглощаемой энергии. Имеет кольца.

Билет № 11.
План:

    Физические условия на Луне (размер, масса, плотность, температура) - Луна меньше Земли по массе в 81,3 раз, средняя её плотность 3350 кг/м3
    • , т. е. меньше, чем у Земли. На Луне нет атмосферы, только разреженная пылевая оболочка. Огромные перепады температуры лунной поверхности от дня к ночи объясняются не только отсутствием атмосферы, но и продолжительностью лунного дня и лунной ночи, которая соответствует двум нашим неделям. Температура в подсолнечной точке Луны достигает + 120° С, а в противоположной точке ночного полушария – 170° С.

    • Рельеф - моря - крупнейшее из дюжины морей на видимой стороне Луны – Море Дождей диаметром ок. 1200 км;  материки – яркие приподнятые области, заполненные множеством больших и маленьких круглых кратеров, часто перекрывающихся.  Поверхность «материков», являющаяся более старой, гориста, ее уровень выше, чем у «морей», и разность средних высот достигает 2,3 км. Трещины и крутые каньоны шириной 1–2 км часто тянутся на сотни километров почти по прямой; горные цепи - основные цепи гор на видимой стороне Луны (Апеннины, Альпы и Кавказ), конечно, были сформированы столкновением, породившим Море Дождей. Концентрические цепи гор окружают и некоторые другие моря. Некоторые горы вдоль южного края Луны сравнимы по высоте с Эверестом. Максимальные высоты лунных гор ~ 5 км. Горы пологие с уклоном в 15-200. Более гориста обратная сторона Луны; 
       кратеры -  на долю которых приходится немногим более 83% площади поверхности Луны, самый крупный Герцшпрунг, диаметром 591 км, который расположен на обратной сторон Луны. Заметный лунный кратер Тихо в южной возвышенной части Луны, окруженный самой яркой и наиболее обширной на Луне системой лучей, достигающих 1800 км в длину.

    • Химические особенности поверхности - довольно рыхлый слой состоит из пород, раздробленных постоянным потоком падающих на нее твердых тел — от микрометеоритов и пыли до крупных частиц — РЕГОЛИТ (от греч. rhegos — покрывало и ...лит), лунный грунт, состоит из разнозернистого обломочно-пылевого материала, обломки которого представлены лунными породами и минералами, стеклом, литифицированными брекчиями, фрагментами метеоритов. Сформирован в результате дробления, перемешивания и спекания лунных пород при падении метеоритов. Насыщен инертными газами. Мощность реголита от 6,5 см до десятков м. Содержание оксидов железа в лунных базальтах на 25%, а титана — на 13% выше, чем в земных. Исследованные лунные грунты содержат около 70 химических элементов. Основными лунными породами являются: 1) морские базальты, более или менее богатые железом и титаном; 2) материковые базальты, богатые камнем, редкоземельными элементами и фосфором; 3) алюминиевые материковые базальты – возможный результат ударного плавления; 4) магматические породы, такие, как анортозиты, пироксениты и дуниты. «Морские» базальты на Луне отличаются повышенным содержанием оксидов алюминия и кальция и относительно более высокой плотностью, что связывают с их глубинным происхождением. Цвет грунта от темно-серого до черноватого. Обнаружены прозрачные и мутноватые капли-шарики. Лунный грунт обладает чрезвычайно низкой теплопроводностью, такой, что самые лучшие земные теплоизоляционные материалы передают тепло лучше лунного грунта.

    • Наличие тектонической деятельности. Зарегистрированные сейсмометрами за 8 лет наблюдений лунотрясения произошли на видимой стороне Луны. На обратной же известно всего пять эпицентров лунотрясений, тогда как на видимой стороне их несколько десятков, некоторые зарегистрированы силой до 5,5 баллов по шкале Рихтера.
          В настоящее время картина строения Луны разработана довольно детально. Принято считать, что недра Луны можно разделить на пять слоев: лунная кора - толщина 68 км (от 6 км в Море Кризисов до 107 км на невидимой - в северной части кратера Королева). Кора со стороны повернутой к Земле тоньше. Под корой располагается верхняя мантия — слой толщиной около 250 км. Еще глубже — средняя мантия толщиной порядка 500 км. На глубинах порядка 600-800 км, то есть у подошвы твердой оболочки Луны - литосферы, располагаются глубокофокусные лунные сейсмические очаги. Естественная сейсмическая активность на Луне невелика. Основными причинами сейсмической активности Луны являются приливное воздействие 3емли и падения крупных метеоритов.
          На глубине около 800 км кончается литосфера (твердая оболочка) и начинается лунная астеносфера — расплавленный слой, в котором, как и в любой жидкости, могут распространяться только продольные сейсмические волны. Температура верхней части астеносферы порядка 1200 К.  На глубине 1380-1570 км происходит резкое изменение скорости продольных волн — здесь проходит граница (довольно размытая) пятой зоны — ядра Луны. Предположительно, это относительно небольшое ядро (на его долю приходится не более 1% массы Луны) состоит из расплавленного сульфида железа.

    Луна – единственный естественный спутник Земли. Поверхность Луны сильно неоднородна. Основные крупномасштабные образования – моря, горы, кратеры и яркие лучи, возможно, – выбросы вещества. Моря, темные, гладкие равнины, представляют собой депрессии, заполнен­ные застывшей лавой. Диаметры самых больших из них превышают 1000 км. Др. три типа образований с большой вероятностью являются следствием бомбардировки лунной поверхности на ранних стадиях существования Солнечной системы. Бомбардировка длилась несколько сотен миллионов лет, а обломки оседали на поверхности Луны и планет. Обломки астероидов поперечником от сотен километров до мельчайших пылевых частиц сформировали гл. детали Луны и поверхностный слой скальных пород. За периодом бомбардировки последовало заполнение морей базальтовой лавой, порожденной радиоактивным разогревом лунных недр. Приборами космических аппаратов серии «Аполлон» была зарегистрирована сейсмическая активность Луны, т. н. лунотрясение. Образцы лунного грунта, доставленные на Землю, показали, что возраст Луны 4,527 млрд. лет - на 40 млн. лет моложе Земли, состоит из тех же химических элементов, что и Земля, с таким же примерно соотношением. На Луне нет и, вероятно, никогда не было атмосферы, и нет оснований утверждать, что когда-либо там существовала жизнь. Согласно последним теориям, Луна образовалась в результате столкновения планетезимали размерами с Марс и молодой Земли. Температурa лунной поверхности достигает 120°С лунным днем и падает до -170°С лунной ночью. На Луне не суще­ствует эрозии, за исключением медленного разрушения скал из-за попеременного теплового расширения и сжатия и случайных внезапных локальных катастроф вследствие метеоритных ударов.
   Масса Луны точно измерена путем изучения орбит ее искусственных спутников и относится к массе Земли как 1/81,3; ее диаметр 3474 км, что составляет 1/3,6 диаметра Земли. Луна имеет форму эллипсоида, хотя три взаимно перпендикулярных диаметра различаются не больше, чем на километр. Период вращения Луны равен периоду обращения вокруг Земли, так что, если не считать эффектов либрации, она всегда повернута к ней одной стороной. Средняя плотность 3330 кг/м3, значение очень близкое к плотности основных пород, лежащих под земной корой, а сила гравитации на поверхности Луны составляет 1/6 земной. Луна – ближайшее к Земле небесное тело. Если бы Земля и Луна были точечными массами или жесткими сферами, плотность которых меняется только с расстоянием от центра, и не было бы других небесных тел, то орбита Луны вокруг Земли была бы неизменяющимся эллипсом. Однако Солнце и в значительно меньшей степени планеты, особенно Юпитер, оказывают гравитационное воздействие на Луну, вызывая возмущение ее орбитальных элементов, поэтому большая полуось, эксцентриситет и наклонение непрерывно подвергаются циклическим возмущениям, осциллируя относительно средних значений.

Спутники планет:

  1. Земля - имеет единственный естественный спутник Луну.

  2. Марс - (2 небольших спутника: Фобос, медленно приближающийся (падающий) к Марсу и Деймос).

  3. Юпитер (63 спутника, самые известные 4 галилеевых спутника (открыты Г.Галилео в 1610г): Европа, Каллисто, Ио, Ганимед; на Европе - вулканы,  океан воды). Европа имеет период, почти равный половине периода Ганимеда. Такое явление называется резонансом. Исследование КА Галилео;

  4. Сатурн (60 спутников, особо известен Титан: имеет атмосферу, на Энцеладе также есть атмосфера и бьют гейзеры). Исследование КА Кассини, запустивший зонд на Титан.

  5. Уран (27 спутников).

  6. Нептун (13 спутников).

  7. Плутон (3 спутника) - хотя он уже относится к карликовым планетам.

Билет № 12.
    Комета, небесное тело Солнечной системы, состоящее из частиц льда и пыли, движущиеся по сильно вытянутым орбитам, значит на расстоянии от Солнца выглядят слабо светящимися пятнышками овальной формы. По мере приближения к Солнцу вокруг этого ядра образуются кома (почти сферическая газопылевая оболочка, окружающая голову кометы при ее приближении к Солнцу. Эта «атмосфера», непрерывно сдуваемая солнечным ветром, восполняется газом и пылью, улетучивающимися из ядра. Диаметр комы достигает 100 тыс. км. Скорость убегания газа и пыли составляет несколько километров в секунду относительно ядра, и они рассеиваются в межпланетном пространстве частично через хвост кометы - поток газа и пыли, образующийся под действием светового давления и взаимодействия с солнечным ветром из рассеивающейся в межпланетном пространстве атмосферы кометы. У большинства комет хвост появляется, когда они приближаются к Солнцу на расстояние меньше 2 а.е. Хвост практически всегда направлен от Солнца. Газовый хвост образован ионизованными молекулами, выброшенными из ядра, под воздействием солнечного излучения имеет голубоватую окраску, отчетливые границы, типичная ширина 1 млн. км, длина — десятки миллионов километров. Структура хвоста может заметно меняться в течение нескольких часов. Скорость отдельных молекул колеблется от 10 до 100 км/сек. Пылевой хвост более расплывчатый и искривленный, причем его кривизна зависит от массы пылевых частиц. Пыль непрерывно выделяется из ядра и увлекается потоком газа. Центр, часть кометы называется ядром и представляет собой леденистое тело — остатки огромных скоплений ледяных планетезималей, образовавшихся во время формирования Солнечной системы. Кометы в большинстве сосредоточены на периферии — в облаке Оорта—Эпика. Средняя масса ядра кометы 1—100 млрд. кг, диаметр 200—1200 м, плотность 200 кг/м3 ('/5 плотности воды). В ядрах имеются пустоты. Это непрочные образования, состоящие на одну треть из льдов и на две трети из пылевого вещества. Лед главным образом водяной, но имеются примеси других соединений. При каждом возвращении к Солнцу лед тает, молекулы газа покидают ядро и увлекает за собой частицы пыли и льда, при этом вокруг ядра образуется сферическая оболочка — кома, длинный плазменный хвост, направленный от Солнца, и пылевой хвост. Количество теряемого вещества зависит от количества пыли, покрывающей ядро, и расстояния от Солнца в перигелии. Данные, полученные в результате наблюдений космического аппарата «Джотто» за кометой Галлея (Т = 76 лет; 1910 – 1986 – 2062) с близкого расстояния, подтвердили многие теории строения кометы.
   Кометы обычно называют в честь их открывателей с указанием года, когда они наблюдались в последний раз. Подразделяются на короткопериодические и долгопериодические Короткопериодические  кометы обращаются вокруг Солнца с периодом в несколько лет, в среднем около 8 лет; кратчайший период — немного более 3 лет — имеет комета Энке. Эти кометы были захвачены гравитационным полем Юпитера и стали вращаться на относительно малых орбитах. Типичная из них имеет расстояние в перигелии 1,5 а.е. и полностью разрушается после 5 тыс. оборотов, порождая метеорный поток. Астрономы наблюдали распад кометы Веста в 1976г и кометы Биэла. Напротив, периоды обращения долгопериодических комет могут достигать 10 тыс., а то и 1 млн. лет, и их афелии могут находиться на '/з расстояния до ближайших звезд. В настоящее время известно около 140 короткопериодических и 800 долгопериодических комет, и каждый год открывается около 30 новых. Наши знания о этих объектах неполны, т.к. их обнаруживают лишь тогда, когда они приближаются к Солнцу на расстояние примерно 2,5 а.е. Предполагается, что вокруг Солнца обращается порядка триллиона комет.
   Астероид (asteroid), малая планета, которая имеет близкую к круговой орбиту, лежащую вблизи плоскости эклиптики между орбитами Марса и Юпитера. Вновь открытым астероидам присваивается порядковый номер после определения их орбиты, достаточно точной, чтобы астероид «не потерялся». В 1796г французский астроном Жозеф Жером Лаланд предложил приступить к поискам «отсутствующей» планеты между Марсом и Юпитером, предсказываемой правилом Боде. В новогоднюю ночь 1801г итальянский астроном Джузеппе Пиацци во время наблюдений для составления звездного каталога открыл Цереру. Немецкий ученый Карл Гаусс вычислил ее орбиту. К настоящему времени известно более 250000 астероидов, из них около половины нумерованы (определены орбиты), а 12 000 имеют собственные имена. Радиусы первых и самых крупных астероидов Цереры (отнесен к карликовым планетам), Паллады и Весты — 466, 304 и 290 км соответственно, остальных — меньше. По оценкам в главном поясе, между орбитами Марса и Юпитера, находится порядка 100 млн. астероидов, их суммарная масса, по-видимому, составляет около 1/2200 массы, первоначально присутствовавшей в этой области. Возникновение данного пояса астероидов, возможно, связано с разрушением планеты (традиционная называемой Фаэтоном, совр. название — планета Ольберса) в результате столкновения с другим телом. Поверхности наблюдаемых астероидов состоят из металлов и скальных пород. В зависимости от состава астероиды делятся на типы (C, S, M, U). Состав типа U не опознан. Наиболее известные астероиды: Веста, Паллада, Юнона, Икар, Гермес, Аполлон и т.д.
    Астероиды группируются также по элементам орбит, образуя т.н. семейства Хираямы. Большинство астероидов имеет период обращения около 8 час. Все астероиды радиусом меньше 120 км имеют неправильную форму, орбиты подвержены гравитационному воздействию Юпитера. В результате в распределении астероидов по большим полуосям орбит существуют пробелы, называемые люками Кирквуда. Астероиды, попавшие в эти люки, имели бы периоды, кратные орбитальному периоду Юпитера. Орбиты астероидов в этих люках крайне неустойчивы. Внутренние и внешние края пояса астероидов лежат в областях, где это соотношение равно 1 : 4 и 1 : 2.
    Исследование комет, астероидов, метеорных потоков показало, что все они имеют одинаковую физическую природу и одинаковый химический состав. По теории возникновения Солнечной системы академика О. Ю. Шмидта Земля и планеты возникли из газопылевого облака, которое вследствие закона всемирного тяготения было схвачено Солнцем и вращалось в том же направлении, что и Солнце. Когда протозвезда сжимается, она образует диск из вещества, окружающий звезду. Часть вещества этого диска падает обратно на звезду, повинуясь силе тяготения. Газ и пыль, что остаются в диске, постепенно охлаждаются. Когда температура опускается достаточно низко, вещество диска начинает собираться в небольшие сгустки – очаги конденсации. Так возникают планетезимали. В процессе формирования Солнечной системы часть планетезималей разрушилась в результате столкновений, а другие объединились, чтобы образовать планеты. В наружной части Со­лнечной системы образовались большие планетные ядра, которые способны были удержать на себе некоторое количество газа в виде первичного облака. Более тяжелые частицы удерживались притяжением Солнца и под воздействием приливных сил долго не могли сформироваться в планеты. Так было положено начало образованию «газовых гигантов» — Юпитера, Сатурна, Урана и Нептуна. У них, по всей вероятности, возникли собственные минидиски из газа и пыли, из которых в конце концов образовались луны и кольца. Наконец, во внутренней Солнечной системе из твердого вещества формируются Меркурий, Венера, Земля и Марс.  Свидетельством того, что планеты образовались из таких сгущений и формирование Солнечной системы проходило в едином процессе, является выпадение метеоритов на Землю (найдены с Луны и Марса) и на другие планеты.

Билет № 13.
    Солнце, центральное тело Солнечной системы, представляет собой раскаленный плазменный шар, т. е. атомы потеряли свои внешние электроны и вместе с ними стали свободными частицами ионизированного газа – плазмы. Звезда, вокруг которой обращается Земля. Обычная звезда главной последовательности спектрального класса G2, самосветящаяся газовая масса, состоящая на 71% из водорода и на 26% из гелия. Абсолютная звездная величина +4,83, эффективная температура поверхности 5770 К. В центре Солнца она 15*106 К, что обеспечивает давление, способное противостоять силе гравитации, которая на поверхности Солнца (фотосфере) в 27 раз больше, чем на Земле. Такая высокая температура возникает за счет термоядерных реакций превращения водорода в гелий (протон-протонная реакция) (выход энергии с поверхности фотосферы 3,8*1026 Вт). Солнце — сферически симметричное тело, находящееся в равновесии. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоев, постепенно переходящих друг в друга. Почти вся энергия Солнца генерируется в центральной области — ядре, где протекает реакция термоядерного синтеза. Ядро занимает менее 1/1000 его объема, плотность — 160 г/см3  (плотность фотосферы в 10 млн. раз меньше плотности воды). Из-за огромной массы Солнца и непрозрачности его вещества излучение идет из ядра к фотосфере очень медленно — около 10 млн. лет. За это время уменьшается частота рентгеновского излучения, и оно становится видимым светом. Однако нейтрино, образующиеся в ядерных реакциях, свободно покидают Солнце и в принципе обеспечивают непосредственное получение информации о ядре. Расхождение между наблюдаемым и предсказанным теорией потоком нейтрино породило серьезные споры о внутреннем строении Солнца. На протяжении последних 15% радиуса находится конвективная зона. Конвективные движения также играют роль в переносе магнитных полей, генерируемых токами в его вращающихся внутренних слоях, что проявляется в виде солнечной активности, причем наиболее сильные поля наблюдаются в солнечных пятнах. За пределами фотосферы находится солнечная атмосфера, в которой температура достигает минимального значения 4200 К, а затем снова увеличивается вследствие диссипации ударных волн, порождаемых подфотосферной конвекцией, в хромосфере, где резко возрастает до значения 2*106 К, характерного для короны. Высокая температура последней ведет к непрерывному истечению плазменного вещества в межпланетное пространство в виде солнечного ветра. В отдельных областях может быстро и сильно возрастать напряженность магнитного поля. Этот процесс сопровождается целым комплексом явлений солнечной активности. К ним относятся солнечные вспышки (в хромосфере), протуберанцы (в солнечной короне) и корональные дыры (особые области короны).
   Масса Солнца 1,99*1030 кг (333 тыс. раз больше массы Земли), средний радиус, определяемый приблизительно сферической фотосферой, — 700 000 км (110 радиусов Земли). В Солнце может уместиться 1,3 млн. таких тел, как Земля. Вращение Солнца вызывает движение его поверхностных образований, таких, как солнечные пятна, в фотосфере и расположенных над ней слоях. Средний период вращения 25,4 дня, причем на экваторе он составляет 25 суток, а на полюсах — 41 день. Вращением обусловлено сжатие солнечного диска, составляющее 0,005%.
  Вокруг пятен иногда видны почти незаметные светлые образования, которые называют факелами. Главной особенностью пятен и факелов является присутствие магнитных полей с индукцией, достигающей 0,4-0,5 Тл.

Билет № 14.
     Солнечная активность является следствием конвекции средних слоев звезды. Причина этого явления заключается в том, что количество энергии, поступающей от ядра гораздо больше отводимого теплопроводностью. Конвекция вызывает сильные магнитные поля, генерируемые токами в конвектирующих слоях. Основными проявлениями солнечной активности, воздействующими на Землю, являются солнечные пятна, солнечный ветер, протуберанцы.
Солнечные пятна, образования в фотосфере Солнца, наблюдались с древних времен, и в настоящее, время их считают областями фотосферы с температурой на 2000 К ниже, чем в окружающих, из-за наличия сильного магнитного поля (ок. 2000 Гс). Солнечные пятна состоят из относительно темной центр, части (тени) и более светлой волокнистой полутени. Поток газа из тени в полутень называется эффектом Эвершеда (V=2км/с). Число солнечных пятен и их появление меняются в течение 11-летнего цикла солнечной активности, или цикла солнечных пятен, который описывается законом Шперера и графически иллюстрируется бабочковидной диаграммой Маундера (перемещение пятен по широте). Цюрихское относительное число солнечных пятен указывает общую площадь поверхности, покрытую солнечными пятнами. На основной 11-летний цикл накладываются долгопериодичные вариации. Например, солнечные пятна меняют магнитную полярность в течение 22-летнего цикла солнечной активности. Но наибольший, поразительный пример долгопериодичных вариаций — это минимум Маундера (1645—1715), когда солнечные пятна отсутствовали. Хотя общепризнанно, что вариации числа солнечных пятен определяются диффузией магнитного поля из вращающихся солнечных недр, процесс еще не понят до конца. Сильное магнитное поле солнечных пятен воздействует на поле Земли вызывая помехи радиосвязи и полярное сияние. Существует несколько неопровержимых короткопериодичных эффектов, утверждающих о существовании долгопериодической связи между климатом и числом солнечных пятен, особенно 11-летним циклом.
Солнечный ветер- истечение высокотемпературной плазмы (электроны, протоны, нейтроны и адроны) солнечной короны, излучение интенсивных волн радиоспектра, рентгеновских лучей в окружающее пространство. Образует т.н. гелиосферу, простирающуюся на 100 а.е. от Солнца. Солнечный ветер так интенсивен, что способен повреждать внешние слои комет, вызывая появление «хвоста». Солнечный ветер  ионизирует верхние слои атмосферы, благодаря чему образуется озоновый слой, вызывает полярные сияния и повышение радиоактивного фона и помехи радиосвязи в местах разрушения озонового слоя.
Последний максимум солнечной активности был в 2001 году. Максимум солнечной активности означает наибольшее количество пятен, излучения и протуберанцев. Давно установлено, что изменение солнечной активности Солнце влияет на следующие факторы:
· эпидемиологическую обстановку на Земле;
· количество разного рода стихийных бедствий (тайфуны, землетрясения, наводнения и т. д.);
·“магнитные бури” влияют на теле- и радиосвязь, вызывают мощные полярные сияния;
· на количество автомобильных и железнодорожных аварий.
Максимум всего этого приходится на годы активного Солнца. Как установил советский учёный А.Л. Чижевский, активное Солнце влияет на самочувствие человека.
С тех пор составляются периодические прогнозы самочувствия человека.
    Солнце излучает во всем диапазоне волн: ультрафиолетовое, рентгеновское, инфракрасное и космические лучи (электроны, протоны, нейтроны и тяжёлые частицы адроны). Эти излучения почти целиком задерживаются атмосферой Земли. Вот почему следует сохранять атмосферу Земли в нормальном состоянии. Периодически появляющиеся озоновые дыры пропускают излучение Солнца, которое достигает земной поверхности и пагубно влияет на органическую жизнь на Земле.

Билет № 15.
   Для измерения расстояния до тел Солнечной системы применяется метод параллакса. Радиус земли оказывается слишком малым, чтобы служить базисом для измерения параллактического смещения звёзд и расстояния до них. Поэтому пользуются годичным параллаксом вместо горизонтального.
    Годичным параллаксом звезды называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты, если она перпендикулярна лучу зрения.   , где a – большая полуось земной орбиты,   , где p – годичный параллакс.
   Также используется единица расстояния парсек. Парсек – расстояние, с которого большая полуось земной орбиты, перпендикулярная лучу зрения видна под углом 1². 1 парсек = 3,26 светового года = 206265 а. е. = 3 * 1011 км. Измерением годичного параллакса можно надёжно установить расстояние до звёзд, находящихся не далее 100 парсек или 300 св. лет.
    Если известны абсолютная и видимая звездные величины, то расстояние до звезды можно определить по формуле lg(r)=0.2*(m-M)+1

Билет № 16.
   Основные физические характеристики звезд: светимость, абсолютная и видимая звездные величины, масса, температура, размер, спектр.
Светимость – энергия, излучаемая звездой или другим небесным телом за единицу времени. Обычно дается в единицах светимости Солнца, выражается формулой lg (L/Lc) = 0,4•(Mc – M), где L и M – светимость и абсолютная звездная величина источника, Lc и Mc – соответствующие величины для Солнца (Mc = +4,83). Также определяется по формуле L=4πR2σT4. Известны звезды, светимость которых во много раз превосходит светимость Солнца. Светимость Альдебарана в 160, а Ригеля в 80 000 раз больше, чем Солнца. Но подавляющее большинство звезд имеют светимости сравнимые с солнечной или меньше ее.
Звездная величина – мера яркости звезды. Звездная величина не дает истинного представления о мощности излучения звезды. Близкая к Земле слабая звезда может выглядеть ярче, чем далекая яркая звезда, т.к. поток излучения, принимаемый от нее, уменьшается обратно про­порционально квадрату расстояния. Видимая звездная величина (m) — блеск звезды, который видит наблюдатель, глядя на небо. Абсолютная  звездная величина (М) — мера истинной яркости, представляет собой уровень блеска звезды, который она имела бы, находясь на расстоянии 10 пк. Гиппарх изобрел систему видимых звездных величин и предложил её в 125г до н.э. Звездам были приписаны числа в зависимости от их видимой яркости; ярчайшие звезды были 1-й величины, а самые слабые — 6-й. В 1857г эта система была модифицирована Н. Погсоном. Современная шкала звездная величина была установлена путем определения звездной величины представительной выборки звезд вблизи сев. полюса мира (сев. полярный ряд). По ним определялись звездная величина всех других звезд. Это логарифмическая шкала, на которой звезды 1-й величины в 100 раз ярче звезд 6-й величины. По мере роста точности измерений пришлось вводить десятые доли. Самые яркие звезды ярче 1-й величины, а некоторые даже имеют отрицательные звездные величины.
Масса звездная – параметр, непосредственно определяемый только для компонентов двойных звезд с известными орбитами и расстояниями (M1 +M2= R3/T>2). Т.о. установлены массы лишь нескольких десятков звезд, но для гораздо большего числа массу можно определить из зависимости масса – светимость. Массы больше 40 солнечных и менее 0,1 солнечных очень редки. Массы большинства звезд меньше солнечной. Температура в центре таких звезд не может достигать уровня, при котором начинаются реакции ядерного синтеза, и источником их энергии является только сжатие Кельвина – Гельмгольца. Такие объекты называются коричневыми карликами.
Масса—светимость соотношение, найденное в 1924г Эддингтоном, - соотношение между светимостью L и звездной массой М. Соотно­шение имеет вид L/Lс = (М/Мс)а, где Lс и Мс — светимость и масса Солнца соответственно, значение а обычно лежит в диапазоне 3—5. Соотношение следует из того факта, что наблюдаемые свойства нормальных звезд определяются главным образом их массой. Это соотношение для звезд-карликов хорошо согласуется с наблюдениями. Считается, что она справедлива также для сверхгигантов и гигантов, хотя их масса плохо поддается прямым измерениям. Соотношение не применимо к белым карликам, т.к. завышает их светимость.
Температура звездная – температура некоторой области звезды. Относится к числу важнейших физических характеристик любого объекта. Однако из-за того, что температура различных областей звезды отличается, а также из-за того, что температура – термодинамическая величина, которая зависит от потока электромагнитного излучения и присутствия различных атомов, ионов и ядер в некоторой области звездной атмосферы, все эти различия объединяют в эффективную температуру, тесно связанную с излучением звезды в фотосфере. Эффективная температура, параметр, характеризующий полное количество энергии, излучаемой звездой с единицы площади ее поверхности. Это однозначный метод описания звездной температуры. Эффективная температура определяется через температуру абсолютно черного тела, которое бы, согласно закону Стефана—Больцмана, излучало такую же мощность на единицу площади поверхности, как и звезда. Хотя спектр звезды в деталях значительно отличается от спектра абсолютно черного тела, тем не менее эффективная температура характеризует энергию газа во внешних слоях звездной фотосферы и позволяет, используя закон смещения Вина (λmax=0,29/Т), определить, на какую длину волны приходится максимум звездного излучения, а следовательно и цвет звезды.
По размерам звезды делятся на карлики, субкарлики, нормальные звезды, гиганты, субгиганты и сверхгиганты. Звёзды-карлики – спутник звезды Сириус; средние – Солнце, Капелла (Возничий); нормальные (t = 10 тыс. К) – имеют размеры между Солнцем и Капеллой; звёзды-гиганты – Антарес, Арктур; сверхгиганты – Бетельгейзе, Альдебаран.
Спектр звезд зависит от ее температуры, давления плотности газа ее фотосферы, силы магнитного поля и химического состава.
Спектральные классы, - классификация звезд по их спектрам (в первую очередь по относительным интенсивностям спектральных линий), впервые введенная итальянским астрономом А. Секки в 1863г. Ввел буквенные обозначения, которые были модифицированы по мере расширения знаний о внутреннем строении звезд. Цвет звезды зависит от температуры ее поверхности, поэтому в современной спектральной классификации Дрэпера (гарвардской) спектральные классы расположены в порядке убывания температуры:

                              S
O – B – A – F – G – K – M
                                 R – N

 

Конечные стадии эволюции звезды также определяются массой звезды. Если эта масса не превосходит солнечную более чем в 1,4 раза, звезда стабилизируется, становясь белым карликом. Катастрофического сжатия не происходит благодаря основному свойству электронов.    Существует такая степень сжатия, при которой они начинают отталкиваться, хотя никакого источника тепловой энергии уже нет. Это происходит лишь тогда, когда электроны и атомные ядра сжаты невероятно сильно, образуя чрезвычайно плотную материю. Белый карлик с массой Солнца по объему приблизительно равен Земле. Белый карлик постепенно остывает, в конечном итоге превращаясь в темный шар радиоактивного пепла. По оценкам астрономов, не менее десятой части всех звезд Галактики – белые карлики.
   Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на этом не остановится. Гравитационные силы в этом случае столь велики, что электроны вдавливаются внутрь атомных ядер. В результате протоны превращаются в нейтроны, способные прилегать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. Эти звезды как бы пульсирует, излучая радиоволны и их называют еще пульсарами.
   Если масса звезды превышает 3 массы Солнца, то конечной стадией ее жизненного цикла является, вероятно, черная дыра. Если масса звезды, а, следовательно, и сила тяготения так велики, то звезда подвергается катастрофическому гравитационному сжатию, которому не могут противостоять никакие стабилизирующие силы. Плотность вещества в ходе этого процесса стремится к бесконечности, а радиус объекта — к нулю. Согласно теории относительности Эйнштейна, в центре черной дыры возникает сингулярность пространства-времени. Гравитационное поле на поверхности сжимающейся звезды растет, поэтому излучению и частицам становится все труднее ее покинуть. В конце концов, такая звезда оказывается под горизонтом событий, который можно наглядно представить как одностороннюю мембрану, пропускающую вещество и излучение только внутрь и не выпускающую ничего наружу. Коллапсирующая звезда превращается в черную дыру, и ее можно обнаружить только по резкому изменению свойств пространства и времени около нее. Радиус горизонта событий называется радиусом Шварцшильда.
   Звезды с массой меньше 1,4 солнечной в конце жизненного цикла медленно сбрасывают верхнюю оболочку, которую называют планетарной туманностью. Более массивные звезды, которые превращаются в нейтронную звезду или черную дыру, сначала взрываются как сверхновые, их блеск за короткое время увеличивается на 20 величин и более, высвобождается энергии больше, чем излучает Солнце за 10 миллиардов лет, а остатки взорвавшейся звезды разлетаются со скоростью 20 000 км в секунду.

Билет № 21.
Галактика (галактика Млечный путь), звездная система, к которой принадлежит Солнце. Предположение, что Млечный Путь скопище слабо светящих звезд, впервые высказал Демокрит, а доказал в декабре 1609г Галилео Галилей. Галактика содержит по меньшей мере 200 млрд. звезд и относится к типу спиральных галактик. Возраст Галактики 13,7±0,8 млрд. лет. Три главные составляющие Галактики: центральное утолщение, диск и галактическое гало. Галактика включает: более 6000 галактических молекулярных облаков, содержащих в себе до 50% межзвездного газа, туманностей, планетных тел и их систем, нейтронных звезд, белых и коричневых карликов, черных дыр, космической пыли и газа. Диск Галактики пронизан крупномасштабным магнитным полем, удерживающим частицы космических лучей и заставляющим их двигаться вдоль магнитных линий по винтовым траекториям. 85-95% видимой массы Галактики сосредоточено в звездах, 5-15% - в межзвездном диффузном газе. Массовая доля тяжелых элементов в химическом составе Галактики составляет 2%. Возраст Галактики 13,7 ± 0,8 млрд. лет. Большая часть звезд Галактики образовалась свыше 9 млрд. лет назад.
     Центральное утолщение состоит из старых звезд населения II типа (красные гиганты), расположенных очень плотно, а в его центре (ядре) находиться мощный источник излучения - вещество втягивается находящимися в центре двумя черными дырами. Газовое кольцо вращается вокруг черных дыр; горячий газ, срываясь с его внутреннего края, падает на черную дыру, при этом выделяется энергия, которую мы и наблюдаем. Параметры центрального утолщения: 20 000 световых лет в поперечнике и 3000 световых лет в толщину.
    Диск Галактики, содержащий молодые звезды населения I типа (молодые голубые сверхгиганты), межзвездную материю, рассеянные звездные скопления и 4 спиральные рукава, имеет диаметр более 100 000 световых лет и толщину всего 3000 световых лет. Галактика вращается, внутренние её части проходят по своим орбитам намного быстрее, чем внешние. Солнце совершает полный оборот вокруг ядра за 200 млн лет. В спиральных рукавах идет непрерывный процесс звездообразования.
    Галактическое гало концентрично с диском и центральным утолщением и состоит из звезд, преимущественно являющихся членами шаровых скоплений и принадлежащих к населению II типа. Однако вращение Галактики показывает, что большая часть вещества в гало невидима и не может быть заключена в обычных звездах, это  не газ и не пыль. Содержащееся в гало темное невидимое вещество в 10 раз превышает массу, которую мы наблюдаем в диске и утолщении.
    Солнце расположено на расстоянии 2/3 от центра диска в Орионовом рукаве. Его локализация в плоскости диска (галактического экватора) позволяет видеть с Земли звезды диска в виде узкой полосы Млечного Пути, охватывающей всю небесную сферу и наклоненной под углом 63° к небесному экватору. Центр Галактики лежит в Стрельце, но он не наблюдаем в видимом свете из-за темных туманностей из газа и пыли, поглощающих свет звезд.

подробно

Билет № 22.
  Звездные скопления – это группы звёзд, расположенных относительно близко друг к другу и связанных общим движением в пространстве. По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому звездные скопления — вещь весьма распространенная. Астрономы любят изучать звездные скопления, потому что все звезды, входящие в скопление, образовались примерно в одно и то же время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Особенно полезно изучение звездных скоплений с точки зрения зависимости их свойств от массы — ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой. Есть два типа звездных скоплений: открытые (рассеянные) и шаровые. В открытом скоплении каждая звезда видна отдельно, они распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную звездами, что в ее центре отдельные звезды неразличимы.
   Открытые скопления содержат от 10 до 1000 звезд, среди них гораздо больше молодых, чем старых, а самые старые едва ли насчитывают более 100 миллионов лет, обычно из звёзд главной последовательности и сверхгигантов. Например звёздное скопление Плеяды в созвездиях Тельца и Гиады. Простым глазом в Плеядах видно 6 звёзд, если же посмотреть в телескоп, то видна россыпь звёзд. Дело в том, что в более старых скоплениях звезды постепенно отдаляются друг от друга, пока не смешаются с основным множеством звезд. Хотя тяготение до некоторой степени удерживает открытые скопления вместе, они все же довольно непрочны, и тяготение другого объекта может их разорвать. Облака, в которых образуются звезды, сконцентрированы в диске нашей Галактики, и именно там обнаруживают открытые звездные скопления.
    В противоположность открытым, шаровые скопления представляют собой сферы, плотно заполненные звездами (от 100 тыс до 1 млн). Размер типичного шарового скопления — от 20 до 400 световых лет в поперечнике.
В плотно набитых центрах этих скоплений звезды находятся в такой близости одна к другой, что взаимное тяготение связывает их друг с другом, образуя компактные двойные звезды. Иногда происходит даже полное слияние звезд; при тесном сближении наружные слои звезды могут разрушиться, выставляя на прямое обозрение центральное ядро. В шаровых скоплениях двойные звезды встречаются в 100 раз чаще, чем где-либо еще.
   Вокруг нашей Галактики мы знаем около 200 шаровых звездных скоплений, которые распределены по всему гало, заключающему в себе Галактику. Все эти скопления очень стары, и возникли они более или менее в то же время, что и сама Галактика. Похоже на то, что скопления образовались, когда части облака, из которого была создана Галактика, разделились на более мелкие фрагменты. Шаровые скопления не расходятся, потому что звезды в них сидят очень тесно, и их мощные взаимные силы тяготения связывают скопление в плотное единое целое.
    Вещество (газ и пыль), находящееся в пространстве между звездами, называется межзвездной средой. Русский астроном В. Я. Струве открыл, что существует межзвёздное поглощение света. Именно межзвёздное поглощение света ослабляет яркость звёзд. Межзвёздная среда заполнена космической пылью, которая образует так называемые туманности, например, тёмные туманность Конская Голова, газопылевая туманность Ориона, которая светится отражённым светом ближайших звёзд. В созвездии Водолея существует Большая Планетарная туманность, образовавшаяся в результате выброса газа ближайшими звёздами. Газовые туманности образуют слой в Галактике толщиной в 200 парсек. Они состоят из H, He, OH, CO, CO2, NH3. Большая часть межзвездной среды сконцентрирована в спиральных рукавах Млечного Пути и составляет 10% его массы. В некоторых областях вещество относительно холодное (100 К) и обнаруживается по инфракрасному излучению. Такие облака содержат нейтральный водород, молекулярный водород и другие радикалы, наличие которых можно обнаружить с помощью радиотелескопов.  Нейтральный водород излучает длину волны 0,21 м. По распределению этого радиоизлучение определяют распределение водорода в Галактике. В областях вблизи звезд высокой светимости температура газа может достигать 1000—10000 К, и водород ионизован.
    Межзвездная среда очень сильно разрежена (около 1 атома на см3). Однако в плотных облаках концентрация вещества может быть в 1000 раз выше средней. Но и в плотном облаке на кубический сантиметр приходится всего несколько сотен атомов. Причина, по которой нам все же удается наблюдать межзвездное вещество, состоит в том, что мы видим его в большой толще пространства. Размеры частиц составляют 0,1 мкм, они содержат углерод и кремний, поступают в межзвездную среду из атмосферы холодных звезд в результате взрывов сверхновых. Воронцов-Вельяминов доказал, что выброс газов звёздами-гигантами достаточен для образования новых звёзд. Образующаяся смесь формирует новые звезды.  Межзвездная среда имеет слабое магнитное поле и пронизано потоками космических лучей.
Наша Солнечная система находится в той области Галактики, где плотность межзвездного вещества необычайно низка. Эта область называется Местным «пузырем»; она простирается во все стороны примерно на 300 световых лет. подробней

Билет № 23.
  Галактики, - системы звезд, пыли и газа полной массой от 1 млн. до 10 трлн. масс Солнца. Вильям Гершель в XVII веке нанёс на звёздную карту очень много туманностей. Впоследствии оказалось, что это гигантские галактики, которые находятся за пределами нашей Галактики. Истинная природа галактик была окончательно объяснена только в 1920-х гг после острых дискуссий. До этого времени при наблюдениях в телескоп они выглядели как диффузные пятна света, напоминающие туманности, но только с помощью 2,5-метрового телескопа-рефлектора обсерватории Маунт-Вилсон, впервые использованного в 1924г, удалось получить изображения отд. звезд в туманности Андромеды и доказать, что это галактика. Этот же телескоп применялся Хабблом для измерения периодов цефеид в туманности Андромеды. Эти переменные звезды изучены достаточно хорошо, чтобы можно было точно определить расстояния до них. Расстояние до туманности Андромеды составляет ок. 700 кпк, т.е. она лежит далеко за пределами нашей Галактики.
   Имеется несколько типов галактик, основные — спиральные и эллиптические. Предпринимались попытки классифицировать их с помощью буквенных и цифровых схем, таких, как классификация Хаббла (В 1936 Хаббл построил классификацию галактик, которая используется по сей день и называется последовательностью Хаббла), однако некоторые галактики не укладываются в эти схемы, в этом случае их называют в честь астрономов, которые впервые выделили их (например галактики Сейферта и Маркаряна), или дают буквенные обозначения классификационных схем (например Галактики N-типа и cD-типа). Галактики, не имеющие отчетливой формы, классифицируются как неправильные. Происхождение и эволюция галактик еще до конца не поняты. Лучше всего изучены спиральные галактики. К ним относятся объекты, имеющие яркое ядро, из которого исходят спиральные рукава из газа, пыли и звезд. Большинство спиральных галактик имеют 2 рукава, исходящих из противоположных сторон ядра. Как правило звезды в них молодые. Это нормальные спирали. Ещё есть пересечённые спирали, у которых есть центральная перемычка из звёзд, соединяющая внутренние концы двух рукавов. Наша Галактика также относится к спиральным. Массы почти всех спиральных галактик лежат в диапазоне от 1 до 300 млрд. масс Солнца. Около трёх четвертей всех галактик во Вселенной являются эллиптическими. Они имеют эллиптическую форму, лишенную различимой спиральной структуры. Их форма может изменяться от почти сферической до сигарообразной. По размеру они очень разнообразны – от карликовых массой несколько млн. солнечных до гигантских массой 10 трлн. солнечных. Самые большие из известных — Галактики cD-типа. Они имеют большое ядро или, возможно, несколько ядер, быстро движущихся относительно друг друга. Часто это довольно сильные радиоисточники. Галактики Маркаряна были выделены советским астрономом Вениамином Маркаряном в 1967г. Они являются сильными источниками излучения в ультрафиолетовом диапазоне. Галактики N-типа имеют похожее на звезду слабо светящееся ядро. Они также сильные радиоисточники и предположительно, эволюционируют в квазары. На фото сейфертовские галактики выглядят как нормальные спирали, но с очень ярким ядром и спектрами с широкими и яркими эмиссионными линиями, указывающими на присутствие в их ядрах большого количества быстровращающегося горячего газа. Этот тип Галактик открыт американским астрономом Карлом Сейфертом в 1943г. Впоследствии оказалось, что такие галактики излучают в ультрафиолетовом и рентгеновском диапазоне; в 2006г их активность была объяснена присутствием в их ядрах сверхмассивных чёрных дыр, на которые происходит аккреция галактического газа. Галактики, наблюдаемые оптически и в то же время являющиеся сильными радиоисточниками, называются радиогалактиками. К ним относятся сейфертовские Галактики, галактики сD и N-типа и некоторые квазары. Механизм генерации энергии радиогалактик еще не понят. подробней

Билет № 24.
   В 20 в. было достигнуто понимание Вселенной как единого целого. Первый важный шаг был сделан в 1920-х гг., когда ученые пришли к выводу, что наша Галактика – Млечный Путь – одна из миллионов галактик, а Солнце – одна из миллионов звезд Млечного Пути. Последующее изучение галактик показало, что они удаляются от Млечного Пути, причем чем дальше они находятся, тем больше эта скорость (измеренная по красному смещению в ее спектре) - мы живем в расширяющейся Вселенной. Разбегание галактик отражено в законе Хаббла, согласно которому красное смещение галактики пропорционально расстоянию до нее. Кроме того, в самом крупном масштабе, т.е. на уровне сверхскоплений галактик, Вселенная имеет ячеистую структуру. Современная космология (учение об эволюции Вселенной) базируется на двух постулатах: Вселенная однородна и изотропна.
    Существует несколько моделей Вселенной.
  В модели Эйнштейна - де Ситтера расширение Вселенной продолжается бесконечно долго, в статической модели Вселенная не расширяется и не эволюционирует, в пульсирующей Вселенной циклы расширения и сжатия повторяются. Однако статическая модель наименее вероятна, не в её пользу говорит не только закон Хаббла, но и обнаруженное в 1965 году фоновое реликтовое излучение (т.е. излучение первичного расширяющегося раскаленной четырехмерной сферы).
    В основе некоторых космологических моделей лежит теория «горячей Вселенной». В соответствии с решениями А. Фридмана уравнений Эйнштейна 10–13 миллиардов лет назад, в начальный момент времени, радиус Вселенной был равен нулю. В нулевом объеме была сосредоточена вся энергия Вселенной, вся ее масса. Плотность энергии бесконечна, бесконечна и плотность вещества. Подобное состояние называется сингулярным.
    В 1946 году Георгий Гамов и его коллеги разработали физическую теорию начального этапа расширения Вселенной, объясняющую наличие в ней химических элементов синтезом при очень высоких температуре и давлении. Поэтому начало расширения по теории Гамова назвали «Большим Взрывом». Соавторами Гамова были Р. Альфер и Г. Бете, поэтому иногда эту теорию называют «б, в, г-теория».
    Вселенная расширяется из состояния с бесконечной плотностью. В сингулярном состоянии обычные законы физики неприменимы. По-видимому, все фундаментальные взаимодействия при столь высоких энергиях неотличимы друг от друга. А с какого радиуса Вселенной имеет смысл говорить о применимости законов физики? Ответ – с планковской длины:
       , начиная с момента времени tp=Rp/c = 5*10-44с (c – скорость света, h – постоянная Планка). Скорее всего, именно через tP гравитационное взаимодействие отделилось от остальных. По теоретическим расчетам, в течение первых 10-36 с, когда температура Вселенной была больше 1028 К, энергия в единице объема оставалась постоянной, а Вселенная расширялась со скоростью, значительно превышающей скорость света. Этот факт не противоречит теории относительности, так как с такой скоростью расширялось не вещество, но само пространство. Эта стадия эволюции называется инфляционной. Из современных теорий квантовой физики следует, что в это время сильное ядерное взаимодействие отделилось от электромагнитного и слабого. Выделившаяся в результате энергия и явилась причиной катастрофического расширения Вселенной, которая за крошечный промежуток времени в 10– 33 с увеличилась от размеров атома до размеров Солнечной системы. В это же время появились привычные нам элементарные частицы и чуть меньшее количество античастиц. Вещество и излучение все еще находилось в термодинамическом равновесии. Эта эпоха называется радиационной стадией эволюции. При температуре 5?1012 К закончилась стадия рекомбинации: почти все протоны и нейтроны аннигилировали, превратившись в фотоны; остались только те, для которых не хватило античастиц. Первоначальный избыток частиц по сравнению с античастицами составляет одну миллиардную от их числа. Именно из этого «избыточного» вещества и состоит в основном вещество наблюдаемой Вселенной. Спустя несколько секунд после Большого Взрыва началась стадия первичного нуклеосинтеза, когда образовывались ядра дейтерия и гелия, продолжавшаяся около трех минут; затем началось спокойное расширение и остывание Вселенной.
    Примерно через миллион лет после взрыва равновесие между веществом и излучением нарушилось, из свободных протонов и электронов начали образовываться атомы, а излучение стало проходить через вещество, как через прозрачную среду. Именно это излучение назвали реликтовым, его температура была около 3000 К. В настоящее время регистрируется фон с температурой 2,7 К. Реликтовое фоновое излучение открыли в 1965 году. Оно оказалось в высокой степени изотропным и своим существованием подтверждает модель горячей расширяющейся Вселенной. После первичного нуклеосинтеза вещество начало эволюционировать самостоятельно, из-за вариаций плотности вещества, образовавшихся в соответствии с принципом неопределенности Гейзенберга во время инфляционной стадии, появились протогалактики. Там, где плотность была чуть больше средней, образовались очаги притяжения, области с пониженной плотностью делались все разреженнее, так как вещество уходило из них в более плотные области. Именно так практически однородная среда разделилась на отдельные протогалактики и их скопления, а спустя сотни миллионов лет появились первые звезды.
    Космологические модели приводят к выводу, что судьба Вселенной зависит только от средней плотности заполняющего ее вещества. Если она ниже некоторой критической плотности, расширение Вселенной будет продолжаться вечно. Этот вариант называется «открытая Вселенная». Похожий сценарий развития ждет и плоскую Вселенную, когда плотность равна критической. Через гугол лет прогорит все вещество в звездах, и галактики погрузятся во тьму. Останутся только планеты, белые и коричневые карлики, а столкновения между ними будут крайне редки.
    Однако даже в этом случае метагалактика не вечна. Если верна теория великого объединения взаимодействий, через 1040 лет распадутся составляющие бывшие звезды протоны и нейтроны. Спустя приблизительно 10100 лет испарятся гигантские черные дыры. В нашем мире останутся лишь электроны, нейтрино и фотоны, удаленные друг от друга на огромные расстояния. В известном смысле это будет конец времени.
    Если же плотность Вселенной окажется слишком велика, то наш мир замкнут, а расширение рано или поздно сменится катастрофическим сжатием. Вселенная закончит свою жизнь в гравитационном коллапсе в известном смысле это еще хуже.    Например красные (Антарес, Бетельгейзе – 3000 К), жёлтые (Солнце, Капелла – 6000 К), белые (Сириус, Денеб, Вега – 10000 К), голубые (Спика – 30000 К).
    Герцшпрунга – Ресселла диаграмма, график, позволяющий определить две основные характеристики звезд, выражает связь между абсолютной звездной величиной и температурой. Названа в честь датского астронома Герцшпрунга и американского астронома Ресселла, опубликовавших первую диаграмму в 1914г. Самые горячие звезды лежат в левой диаграммы, а звезды самой высокой светимости – вверху. От верхнего левого угла к нижнему правому проходит главная последовательность,отражающая эволюцию звезд, и заканчивающуюся звездами-карликами. Большинство звезд принадлежит этой последовательности. Солнце относится также к этой последовательности. Выше главной последовательности располагаются в указанном порядке субгиганты, сверхгиганты и гиганты, ниже – субкарлики и белые карлики. Эти группы звезд называются классами светимости.
   Условия равновесия: как известно, звёзды являются единственными объектами природы, внутри которых происходят неуправляемые термоядерные реакции синтеза, которые сопровождаются выделением большого количества энергии и определяют температуру звёзд. Большинство звёзд находятся в стационарном состоянии, т. е. не взрываются. Некоторые звёзды взрываются (так называемые новые и сверхновые звёзды). Почему же в основном звёзды находятся в равновесии? Сила ядерных взрывов у стационарных звёзд уравновешивается силой тяготения, вот почему эти звёзды сохраняют равновесие.

Билет № 17.
Закон Стефана—Больцмана - соотношение между полной мощностью излучения абсолютно черного тела и его температурой. Полная мощность единичной площади излучения в Вт на 1 м2 дается формулой e =s Т4s – коэффициент, s = 5,67 * 10-8 Вт/м2к4 — постоянная Стефана—Больцмана, Т — абсолютная температура абсолютного черного тела. Хотя объекты редко излучают, как абсолютно черное тело, их спектр излучения часто является удачной моделью спектра реального объекта. Зависимость от температуры в 4-й степени является очень сильной.
e – энергия излучения единицы поверхности звезды, L – светимость звезды, R – радиус звезды.
С помощью формулы Стефана-Больцмана и закона Вина определяют длину волны, на которую приходится максимум излучения: l maxT = b b – постоянная Вина. Можно исходить из обратного, т. е. с помощью светимости и температуры определять размеры звёзд.

Билет № 18.
   Блеск переменных звезд меняется со временем. Сейчас известно ок. 3*104 переменных звезд подразделяются на физические, блеск которых меняется вследствие процессов протекающих в них или около них, и оптические переменные, где это изменение обусловлено вращением или орбитальным движением. Наиболее важные типы физических переменных звезд:
Пульсирующие – цефеиды, звезды типа Мира Кита, полуправильные и неправильные красные гиганты;
Эруптивные (взрывные) – звезды с оболочками,  молодые неправильные переменные, в т.ч. звезды типа Т Тельца (очень молодые неправильные звезды, связанные с диффузными туманностями), сверхгиганты типа Хаббла – Сейнеджа (Горячие сверхгиганты высокой светимости, ярчайшие объекты в галактиках. Они неустойчивы и, вероятно, являются источниками излучения вблизи предела светимости Эддингтона, при превышении которого происходит «сдувание» оболочек звезд. Потенциальные сверхновые.), вспыхивающие красные карлики;
Катаклизмические – новые, сверхновые, симбиотические;
Рентгеновские двойные звезды - указанные переменные звезды включают 98% известных физических переменных звезд. К оптическим относятся затменно-двойные и вращающиеся такие, как пульсары и магнитные переменные. Солнце относится к вращающимся, т.к. его звездная величина слабо меняется, когда солнечные пятна появляются на диске.
    Среди пульсирующих звёзд очень интересны цефеиды, названные так по имени одной из первых открытых переменных этого типа - δ Цефея. Цефеиды - это звёзды высокой светимости и умеренной температуры (жёлтые сверхгиганты). В ходе эволюции они приобрели особую структуру: на определённой глубине возник слой, который аккумулирует энергию, приходящую из недр, а потом вновь отдаёт её. Звезда периодически сжимается, разогреваясь, и расширяется, охлаждаясь. Поэтому и энергия излучения то поглощается звёздным газом, ионизуя его, то опять выделяется, когда при охлаждении газа ионы захватывают электроны, излучая при этом световые кванты. В результате блеск цефеиды меняется, как правило, в несколько раз с периодом в несколько суток. Цефеиды играют особую роль в астрономии. В 1908г американский астроном Генриетта Ливитт, исследовавшая цефеиды в одной из ближайших галактик - Малом Магеллановом Облаке, обратила внимание на то, что эти звёзды оказывались тем ярче, чем продолжительнее был период изменения их блеска. Размеры Малого Магелланова Облака небольшие по сравнению с расстоянием до него, а это означает, что разница в видимой яркости отражает отличие в светимости. Благодаря найденной Ливитт зависимости период - светимость легко рассчитать расстояние до каждой цефеиды, измерив её средний блеск и период переменности. А так как сверхгиганты хорошо заметны, цефеиды можно использовать для определения расстояний даже до сравнительно далёких галактик, в которых они наблюдаются.Есть и вторая причина особой роли цефеид. В 60-е гг. советский астроном Юрий Николаевич Ефремов установил, что чем продолжительнее период цефеиды, тем моложе эта звезда. По зависимости период - возраст нетрудно определить возраст каждой цефеиды. Отбирая звёзды с максимальными периодами и изучая звёздные группировки, в которые они входят, астрономы исследуют самые молодые структуры Галактики. Цефеиды больше других пульсирующих звёзд заслуживают названия периодических переменных. Каждый следующий цикл изменений блеска обычно весьма точно повторяет предыдущий. Однако встречаются и исключения, самое известное из них - Полярная звезда. Уже давно обнаружено, что она относится к цефеидам, хотя и меняет блеск в довольно незначительных пределах. Но в последние десятилетия эти колебания стали затухать, а к середине 90-х гг. Полярная звезда практически перестала пульсировать.
Звезды с оболочками, звезды, непрерывно или с неправильными интервалами сбрасывающие кольцо газа с экватора или сферическую оболочку. Это гиганты или звезды-карлики спектрального класса В, быстровращающиеся и близкие к пределу разрушения. Сброс оболочки обычно сопровождается падением или увеличением блеска.
Симбиотические звезды, звезды, спектры которых содержат эмиссионные линии и сочетают характерные особенности красного гиганта и горячего объекта — белого карлика или аккреционного диска вокруг такой звезды.
Звезды типа RR Лиры представляют другую важную группу пульсирующих звезд. Это старые звезды примерно такой же массы, как Солнце. Многие из них находятся в шаровых звездных скоплениях. Как правило, они меняют свой блеск на одну звездную величину приблизительно за сутки. Их свойства, как и свойства цефеид, используют для вычисления астрономических расстояний.
R Северной Короны и звезды, подобные ей, ведут себя совершенно непредсказуемым образом. Обычно эту звезду можно разглядеть невооруженным глазом. Каждые несколько лет ее блеск падает примерно до восьмой звездной величины, а затем постепенно растет, возвращаясь к прежнему уровню. По-видимому, причина тут в том, что эта звезда-сверхгигант сбрасывает с себя облака углерода, который конденсируется в крупинки, образуя нечто вроде сажи. Если одно из этих густых черных облаков проходит между нами и звездой, оно заслоняет свет звезды, пока облако не рассеется в пространстве. Звезды этого типа производят густую пыль, что имеет немаловажное значение в областях, где образуются звезды.
Вспыхивающие звезды. Магнитные явления на Солнце являются причиной солнечных пятен и солнечных вспышек, но они не могут существенно повлиять на яркость Солнца. Для некоторых звезд – красных карликов – это не так: на них подобные вспышки достигают громадных масштабов, и в результате световое излучение может возрастать на целую звездную величину, а то и больше. Ближайшая к Солнцу звезда, Проксима Кентавра, является одной из таких вспыхивающих звезд. Эти световые выбросы нельзя предсказать заранее, а продолжаются они всего несколько минут.

Билет № 19.
Двойная звезда, пара звезд, связанная в одну систему силами тяготения и обращающаяся вокруг общего центра тяжести. Звезды, составляющие двойную звезду, называются ее компонентами. Двойные звезды весьма распространены и подразделяются на несколько типов.
Каждый компонент визуально-двойной звезды отчетливо виден в телескоп. Расстояние между ними и взаимная ориентация медленно меняются со временем.
Элементы затменно-двойной попеременно загораживают друг друга, поэтому блеск системы временно ослабевает, период между двумя изменениями блеска равен половине орбитального периода. Угловое расстояние между компонентами очень мало, и мы не можем наблюдать их по отдельности.
Спектрально-двойные звезды обнаруживают по изменениям их спектров. При взаимном обращении звезды периодически движутся то по направлению к Земле, то от Земли. По эффекту Допплера в спектре можно определять изменения движения.
Поляризационные двойные характеризуются периодическими изменениями поляризации света. В таких системах звезды при своем орбитальном движении освещают газ и пыль в пространстве между ними, угол падения света на это вещество периодически меняется, при этом рассеянный свет поляризуется. Точные измерения этих эффектов позволяют вычислить орбиты, отношения звездных масс, размеры, скорости и расстояние между компонентами. Например, если звезда одновременно затменная и спектрально-двойная, то можно определить массу каждой звезды и наклон орбиты. По характеру изменения блеска в моменты затмений можно определять относительные размеры звезд и изучать строение их атмосфер. Двойные звезды, служащие источником излучения в рентгеновском диапазоне, называются рентгеновскими двойными. В ряде случаев наблюдается третий компонент, обращающийся вокруг центра масс двойной системы. Иногда один из компонентов двойной системы (или оба), в свою очередь, может оказаться двойными звездами. Тесные компоненты двойной звезды в тройной системе могут иметь период несколько суток, тогда как третий элемент может обращаться вокруг общего центра масс тесной пары с периодом в сотни и даже тысячи лет.
Измерение скоростей звезд двойной системы и применение закона всемирного тяготения представляют собой важный метод определения масс звезд. Изучение двойных звезд – это единственный прямой способ вычисления звездных масс.
В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Вокруг этих двух звезд имеется некоторая область в форме трехмерной восьмерки, поверхность ко­торой представляет собой критическую границу. Эти две грушеобразные фигуры, каждая вокруг своей звезды, называются полостями Роша. Если одна из звезд вырастает настолько, что заполняет свою полость Роша, то вещество с нее устремляется на другую звезду в той точке, где полости соприкасаются. Часто звездный материал не опускается прямо на звезду, а сначала закручивается, образуя так называемый аккреционный диск. Если обе звезды настолько расширились, что заполнили свои полости Роша, то возникает контактная двойная звезда. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Поскольку в конечном счете все звезды разбухают, превращаясь в гиганты, а многие звезды являются двой­ными, то взаимодействующие двойные системы – явление нередкое.

Билет № 20.
    Звезды образуются в межзвездных газопылевых облаках и туманностях. Основная сила, «формирующая» звезды – гравитация. При определенных условиях очень разреженная атмосфера (межзвездный газ) начинает сжиматься под действием сил гравитации. Облако газа уплотняется в центре, где удерживается выделяемое при сжатии тепло – возникает протозвезда, излучающая в инфракрасном диапазоне. Протозвезда разогревается под действием падающего на нее вещества, и начинаются реакции ядерного синтеза с выделением энергии. В таком состоянии это уже переменная звезда типа Т Тельца. Остатки облака рассеиваются. Далее гравитационные силы стягивают атомы водорода к центру, где они сливаются, образуя гелий и выделяя энергию. Растущее давление в центре препятствует дальнейшему сжатию. Это – стабильная фаза эволюции. Эта звезда является звездой Главной последовательности. Светимость звезды растет по мере уплотнения и разогрева ее ядра. Время, в течение которого звезда принадлежит Главной последовательности, зависит от ее массы. У Солнца это приблизительно 10 миллиардов лет, однако звезды гораздо более массивные, чем Солнце существуют в стационарном режиме лишь несколько миллионов лет. (Массивные голубые и белые гиганты выгорают за время 107 лет. Жёлтые звёзды типа Капеллы и Солнца выгорают за 1010 лет). После того как звезда израсходует водород, содержащийся в центральной ее части, внутри звезды происходят крупные перемены. Водород начинает перегорать не в центре, а в оболочке, которая увеличивается в размере, разбухает. В результате размер самой звезды резко возрастает, а температура ее поверхности падает. Именно этот процесс и порождает красных гигантов и сверхгигантов. Белые и голубые звёзды, выгорая, превращаются в красные гиганты. В них происходит синтез 2С + Не ® С2He .

Каждый подразделяется на 10 подклассов, например от АО до А9. Самые горячие звезды класса О – голубоватые с температурой 100 000 К; звезды класса В также голубоватые, А – бело-голубые, F – белые, G – бело-желтые (Солнце принадлежит к этому классу), К – оранжевые, М – красные; звезд, принадлежащих к классам R, N и S немного и их температуpa так низка, что в атмосферах могут находиться молекулы. Два первых из них иногда объединяют в один класс, обозначаемый С