Фотолиз воды и убегание водорода из верхних слоев атмосферы играет ключевую роль в эволюции климата планет земного типа. Однако эти процессы еще далеки от понимания. Планеты земного типа в Солнечной системе демонстрируют драматически разный уровень содержания воды на поверхности и в атмосфере. Если всю воду, что присутствует на Марсе, разлить по его поверхности равномерным слоем, толщина этого слоя составит 7-20 метров. На Земле глубина аналогичного слоя составит 2.5 километров, а на Венере – менее 20 см. На Марсе вода существует в виде льда, сконцентрированного в основном в полярных шапках, на Земле она формирует жидкие океаны и отчасти – околополярные ледники, на Венере присутствует в виде водяного пара в атмосфере.
Чем вызвана эта разница (особенно впечатляющая в случае Земли и Венеры) – пока не ясно. Возможно, сухость Венеры и «влажность» Земли вызваны как начальными условиями при формировании этих планет, так и разным темпом утраты воды в процессе климатической эволюции.
Высокое отношение содержания дейтерия к водороду (D/H) в современной атмосфере Венеры – оно в 120 раз превышает аналогичную величину для Земли – говорит о том, что ранее Венера была гораздо богаче водой, чем сейчас, но впоследствии эту воду утратила. Однако отношение изотопов неона и аргона говорит о том, что Венера никогда не была богата водой настолько, насколько ею богата Земля. Видимо, утрата воды произошла еще на ранней стадии эволюции Венеры.
Утрата воды планетой происходит путем фотолиза водяного пара в верхней атмосфере. Но водяной пар в верхнюю атмосферу еще должен попасть. Ключевую роль здесь играет наличие «холодной ловушки» (cold trap) – атмосферного слоя, где температура воздуха достигает минимума. Попадая в «холодную ловушку», водяной пар конденсируется и выше почти не попадает. Чем ниже температура «холодной ловушки», тем труднее водяному пару попасть в верхнюю атмосферу и подвергнуться фотолизу.
Углекислый газ влияет на проницаемость «холодной ловушки» двояко. С одной стороны, он способствует испарению воды из-за увеличения температуры поверхности вследствие парникового эффекта. С другой – ИК-излучение молекул углекислого газа в полосах вблизи 4.3 и 15 мкм эффективно охлаждает атмосферу и способствует понижению температуры «холодной ловушки».
Два американских астронома, Р. Вордсворт (R. D. Wordsworth) и Р. Пьерхамберт (R. T. Pierrehumbert), построили сетку одномерных климатических моделей, в которых рассчитали темпы утраты воды при разных предположениях относительно содержания в атмосфере планеты углекислого газа и молекулярного азота, а также в зависимости от массы планеты, уровня инсоляции, спектрального класса родительской звезды, и ряда других факторов.
Что же получилось? Сначала Вордсворт и Пьерхамберт рассчитали мощность исходящего от планеты теплового излучения и альбедо. Была получена сетка моделей для планеты земного типа, обладающей азотной атмосферой, аналогичной земной, и земной же силой тяжести, при 100%-ной влажности воздуха, но разном содержании углекислого газа. Видно, что по мере роста количества углекислого газа мощность уходящего в космос теплового излучения падает, а температура поверхности растет. Также с ростом количества углекислоты увеличивается альбедо планеты.
продолжение на сайте Планетные системы.