
6 марта с.г. в Итаке, шт. Нью-Йорк, в возрасте 98 лет скончался один из крупнейших астрофизиков ХХ века, лауреат Нобелевской премии по физике за 1967 год Ханс Альбрехт Бете (Hans Albrecht Bethe).
Ханс Альбрехт Бете родился 2 июля 1906 года в Страсбурге, Эльзас-Лотарингия (тогда входила в Германию). С 1915 по 1924г учился в гимназии Гете во Франкфурте-на-Майне, после чего два года был студентом Франкфуртского университета. Проучившись еще два с половиной года в аспирантуре Мюнхенского университета под руководством Арнольда Зоммерфельда, внесшего большой вклад в современную физику, он получил докторскую степень по теоретической физике в 1928 г.
Получив докторскую степень, он работал в 1928...1929 гг. преподавателем физики в университетах Франкфурта и Штутгарта. В 1929 был назначен лектором Мюнхенского университета , однако большую часть времени в течение следующих трех лет провел в Кембридже (Англия), где встречался с Эрнестом Резерфордом, и в Риме, где работал с Энрико Ферми.
В 1938г на конференции по теоретической физике в Вашингтоне (округ Колумбия) внимание Бете привлек один нерешенный вопрос о природе получения энергии Солнцем и другими звездами. Астрономы накопили немало информации о крайне высоких температурах и других звездных характеристиках и пришли к выводу, что источник энергии должен иметь термоядерную природу. Однако они не могли определить реакции, которые дали бы количественные характеристики, согласующиеся с наблюдаемым излучением, размером, возрастом и другими свойствами звезд. Быстро освоившись с астрономическими данными и применив свои энциклопедические познания в области ядерной физики, он решил эту задачу за шесть недель.
Впервые немецким астрономом Карлом Фридрихом фон Вайцзеккером был предложен для объяснения данного вопроса синтез двух протонов (ядер водорода, в большом количестве находящихся внутри Солнца), при котором образуется дейтерий (называемый также тяжелым водородом, ядро которого содержит протон и нейтрон) и выделяется энергия в виде позитрона (положительного электрона) и нейтрино (незаряженной частицы). Протоны положительно заряжены, а число протонов в ядре определяет элемент (ядро водорода содержит один протон, но может содержать и нейтроны, чья масса примерно равна массе протона, но они не несут заряда). При синтезе двух протонов испускается положительная частица (позитрон), в результате чего один из протонов превращается в нейтрон. Бете рассмотрел такие солнечные характеристики, как температура, плотность, состав, а также ожидаемые скорости реакции, и подсчитал, что реакция синтеза идет как раз при такой скорости, которая обеспечивает наблюдаемое выделение энергии Солнцем. Однако его выкладки показывали, что для звезд более массивных, чем Солнце, в реакции должны участвовать более тяжелые ядра.
Для массивных звезд Бете предложил шестиступенчатый углеродно-азотный цикл. На первом шаге углерод с атомным весом 12 (наиболее распространенная и устойчивая форма углерода с 6 протонами и 6 нейтронами в ядре) захватывает протон, превращаясь в азот-13 (7 протонов, 6 нейтронов) и испуская энергию в виде гамма-лучей. Нестабильный азот-13 распадается, испуская позитрон (который превращает протон в нейтрон) и нейтрино и превращаясь при этом в углерод-13 (6 протонов, 7 нейтронов). Углерод-13 далее захватывает один из всегда имеющихся протонов и превращается в азот-14 (7 протонов, 7 нейтронов), снова испуская гамма-лучи. Азот-14 в свою очередь захватывает протон и становится кислородом-15 (8 протонов, 7 нейтронов), опять испуская гамма-лучи. Нестабильный кислород-15 испускает позитрон (заменяя протон нейтроном) и нейтрино, превращаясь в азот-15 (7 протонов, 8 нейтронов). На последнем шаге азот-15 захватывает протон, но в результате получается не более тяжелое ядро, содержащее 8 протонов и 8 нейтронов, что дало бы кислород-16. Вместо этого образуется два ядра: углерод-12 и гелий-4 (2 протона, 2 нейтрона). Углерод-12 может теперь повторить цикл, а гелий-4 пополняет звездный запас этого газа. На каждом шаге цикла высвобождается энергия в виде различного рода излучений, которые и придают звезде ее яркость. Расчеты Бете позволили глубже понять поведение и эволюцию звезд.
В конце 30- гг. Бете продолжал свои теоретические исследования атомных ядер. Среди его многочисленных достижений было первое математическое обоснование того, что вновь открытый мезон мог быть связанным с силой, удерживающей ядра от распада. Он также исследовал очень сложные ударные волны, образующиеся при взрыве, что оказалось полезным для его дальнейшей работы над Манхэттенским проектом при создании атомной бомбы.
В 1941г, незадолго до того, как США вступили во вторую мировую войну, Бете стал американским гражданином. В течение недолгого времени он работал над микроволнами и их приложениями к радиолокации в радиационной лаборатории Массачусетского технологического института, а затем в 1943г присоединился к Манхэттенскому проекту в Лос-Аламосе (штат Нью-Мексико). Там, будучи директором отдела теоретической физики, он отвечал за расчеты возможного поведения атомной бомбы. Его глубокие знания в области ядерной физики, ударных волн и электромагнитной теории сыграли существенную роль в успехе программы.
Вернувшись в Корнеллский университет в 1946г, Бете продолжил исследования во многих интересовавших его областях – например, сделал важный вклад в современную квантовую электродинамику. Он также немало сделал – вместе с другими учеными – для уяснения общественным мнением той опасности, которую несет человечеству ядерное оружие. Он всегда был сторонником контроля над вооружениями, поддерживая в то же время идею использования ядерной энергии в мирных целях. С 1956 по 1959г Бете служил в Президентском научно-консультативном комитете.
В 1967г был награжден Нобелевской премией по физике «за вклад в теорию ядерных реакций, особенно за открытия, касающиеся источников энергии звезд». При презентации лауреата Оскар Клейн, член Шведской королевской академии наук, отметил широту знаний Бете и сказал, что некоторые из его открытий в области физики, каждое в отдельности, заслуживали самостоятельной Нобелевской премии. Работа Бете над источниками энергии звезд, сказал Клейн, «представляет собой одно из наиболее важных приложений фундаментальной физики в наше время и ведет к углублению наших знаний о Вселенной».
В дальнейшем Бете изучал распределение материи в нейтронных звездах, а также коллапс гигантских звезд. Его исследования по высокоскоростному входу в земную атмосферу помогли при разработке как военных, так и гражданских космических аппаратов. Вспоминая о своей работе в Лос-Аламосе как об «ужасно захватывающей», он выступал против поддерживавшейся правительством программы развертывания антиракетного щита, рассматривая ее как практически неосуществимую.